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ABSTRACT
Utilities across the world struggle to accurately measure electricity
reliability on their grids; the average utility in a 109-country sam-
ple underestimates outages by a factor of 7 (relative to customers).
While some utilities are addressing this challenge by installing
smart meters, many utilities in emerging economies do not have
the technical or budget capacity to deploy smart meters widely. In
this paper, we analyze the size of deployment needed for outage
detection via the GridWatch system, a novel crowdsourcing mobile
application for measuring outages. Using outage data from Kenya
Power and user mobility data, we consider different deployment
sizes and varying levels of detection accuracy of the GridWatch
app. Our results show that differences in neighborhood infrastruc-
ture and dynamics can necessitate a more than 3x difference in
GridWatch deployment size to achieve the same outage detection
performance, stressing the importance of deployment planning for
a crowdsourced infrastructure monitoring system.
1 INTRODUCTION
Electricity reliability varies by orders of magnitude around the
world. Where typical utilities in the United States have roughly
1.5 hours of outage per customer annually [2], utilities in low- and
middle-income countries often have over 100 [13]. In these set-
tings, electricity reliability remains a serious challenge, negatively
affecting economic growth and livelihoods.

Before electricity reliability can be improved, it must be accu-
rately measured. Many utilities in low- and middle-income coun-
tries have limited instrumentation for measuring electricity relia-
bility events such as blackouts and brownouts. While there may
be sensing at higher tiers of the transmission system, distribution
lines are often unmonitored, and outages remain unreported un-
til unhappy customers directly contact the utility. To characterize
the scale of this challenge, we compare responses from two global
surveys conducted by the World Bank, one which asks customers
(businesses) and another which asks utilities [13, 14]. The surveys
report annual hours of outage duration per customer, a common
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Figure 1: Comparison of national reliability measurements
from two World Bank survey programs. Utilities observe
only 15% of outage duration as compared to businesses.
measure of electricity reliability. Figure 1 compares the responses
for the 109 countries common to both surveys. The difference be-
tween the two measurements, expected to be equal, is striking; on
average, utilities report 15% of the outage durations that customers
report. Part of this discrepancy likely arises due to flawed incen-
tives from utilities self-reporting their performance. However, this
finding, taken over a large sample across the globe, underscores the
challenge that utilities in low- and middle-income countries face in
properly measuring reliability performance.

Smart grids, built from instrumentation and analytics for moni-
toring grid systems, have shown innovative methods for measuring
electricity reliability. However, smart meters have been adopted
unevenly; only a handful of countries enjoy near universal deploy-
ment. At present, smart meter penetration in the U.S. is roughly
44% with slowing growth, indicating that many localities in the
U.S. will be without smart meters for the foreseeable future [4]. In
the developing world, few utilities have substantial smart meter
deployments; for example, Kenya Power is presently piloting an
initial deployment of approximately 5000 smart meters (for over 6
million customers) [7], and few other utilities in sub-Saharan Africa
(beyond South Africa) have any smart meters whatsoever.

Two recent initiatives present alternatives to smart meters for
collecting reliability data. The Electricity Supply Monitoring Initia-
tive (ESMI) [1] gathers reliability information using custom-built
electricity monitoring equipment, acting as an independent monitor
of electricity supplies. At present, ESMI has 352 monitoring stations
deployed throughout India, along with small or planned deploy-
ments in Tajikistan, Indonesia, Kenya, and Tanzania. Unfortunately,
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the high cost of equipment ($150 per device) and technical effort
required to maintain the system are challenges for reaching scale.

The GridWatch project [9] takes a different approach, using
mobile applications on commodity smartphones to automatically
detect electricity outages. The "app" works by identifying correlated
changes in side-channel readings from relevant sensors, observing
charge state, WiFi, and ambient light, among others. GridWatch
enables crowdsourcing of outage data by leveraging the broad de-
ployment of smartphones among electricity consumers, enabling
electricity grids with limited low-voltage sensing to achieve many
of the same outage detection benefits bestowed by smart meters.

However, GridWatch has not been deployed widely, and a key
question remains about its viability at scale: how many observation
points (phones) are needed to ensure coverage of outages? In this work,
we address this question for an urban environment by building an
analytical model driven by empirical outage data provided by the
national utility of Kenya. Our model considers the ramifications
of heterogeneous underlying patterns of outages, user mobility
patterns, and varying levels of accuracy of the sensing method.
While this is work-in-progress, understanding the deployment con-
siderations for a crowdsourced system like GridWatch will help
to focus system design, direct marketing efforts to encourage app
installation, and allow comparisons across different areas.

2 RELATEDWORK
The growing ubiquity of mobile devices and sensors creates innu-
merable opportunities tomodernize electricity infrastructure. There
have been many demonstrations using mobile devices to crowd-
source profile analytics, user-assisted predictions, and demand-side
management to enable utilities to innovate towards smart grids [6].
However, most visions of smart grids center on continuous, high-
resolution data originating from smart meters, which are typically
not deployed in developing country settings.

In the absence of smart meters, much of the research involving
sensing of electricity outages using crowdsourcing techniques uses
information collected from social media to locate and detect power
outages [3, 8, 11]. Even though these initiatives use probabilistic
frameworks and machine learning techniques to obtain spatial and
temporal detection, they still require active user participation to
report incidents on social networks and often include only coarse
localization (e.g., at the neighborhood level).

Another important aspect of our work is the deployment strategy
of sensors in order to maximize the performance of outage detection.
In order to monitor a specific geographic area, it is required to have
a collaborative detection using multiple sensors. The number of
sensors not only impacts the robustness of the detection but also the
cost associated with the deployment. Clouqueur, et al. [5] address
these problems for sensors that are placed to detect a target moving
through a region using signal and path exposure measurements.

3 METHODOLOGY
3.1 Datasets
We construct a coverage model for a theoretical GridWatch de-
ployment based on historic outage data collected by Kenya Power
(October 2014 through September 2015). Because Kenya Power’s
grid does not contain low-voltage sensors, these data are comprised
solely of customer-reported faults. Kenya Power allows customers

Figure 2: Average number of outages at different levels of
the distribution grid in Nairobi, Kenya as reported by con-
sumers to Kenya Power from October 2014 through Septem-
ber 2015. Outages could be occuring during the times of peak
demand in themorning and evening, or these could be times
where consumers are most likely to report outages.

to call, visit, post Facebook messages, and tweet to their national
call center. We further classify each Kenya Power outage into one
of four grid tiers: "circuit", "transformer", "feeder", or "phase across
feeder". A "phase across feeder" outage affects multiple feeders
(µ = 3220 customers affected), a "feeder" outage affects multiple
transformers (µ = 3127 customers affected), a "transformer" outage
affects multiple circuits (µ = 297 customers affected), and a "circuit"
outage affects multiple households (µ = 120 customers affected).
Figure 2 shows the average number of customer fault reports for
each hour of the day for each tier across the dataset.

To model the conditions GridWatch requires to sense power out-
ages, we incorporate the publicly-available StudentLife Dataset [12],
which has records of phone charge events of 50 college students
during approximately two months. This dataset allows us to iden-
tify smartphone users’ charging patterns and obtain the proportion
of users that are plugged in to the wall over the course of a day.
Charging patterns are shown in Figure 3. These proportions serve
as proxies for the availability of GridWatch to report an outage at
any given time when it is monitoring changes in the charge state
sensor of the phone. While we recognize that the smartphone us-
age behavior of U.S. college students is likely to differ from urban
dwellers in Nairobi, such data are not publicly available, and could
be trivially incorporated into our model upon collection.
3.2 Coverage Model
We propose a stochastic model to approximate the number of Grid-
Watch devices required to detect a fixed percentage of outages. Our
first step is to analytically obtain the probability of detecting an
outage (Pd ). In order to do so, we define the following random
variables (herein, abbreviated r.v.) and probabilities:
• The r.v. N is the number of customers (households) affected
when an outage occurs. Its probability mass function (PMF)
is obtained from the utility data:

N ∼ PN (n) (1)
2
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Figure 3: Percentage of users charging their phones by hour
of the day, from the StudentLife Dataset [12]. People are less
likely to be charging in the middle of the day.

• The probability that a customer reports an outage given that
(a.) they were affected and (b.) they are a GridWatch user is
denoted as p. The ability of GridWatch to detect an outage
depends on the probability of two events: either changes
in the charging state when smartphones are plugged into
the wall (pc ) or the detection of changes in available WiFi
networks for a phone that is not moving (pw ). These two
events are independent and not disjoint, so p is given by:

p = pc + pw − pcpw (2)
• The proportion of households with GridWatch installed on
a smartphone that are available at the time of the event, q.
• The r.v. representing the number of customers that can report
an outage (n1) given that they (a.) were affected and (b.) are
GridWatch users follows a binomial distribution:

N1 |N = n ∼ Binomial (n,q) (3)
• We also define A as the event of an unreported outage. If we
calculate this probability, finding Pd is equivalent to 1−P (A).

Given the definitions above, we can express the probability of
missing an outage given that it could have been detected by a group
of GridWatch users as:

P (A|N1 = n1) = (1 − p)n1 (4)
However, the definition in 4 holds only for a specific value of n1.
We generalize this probability using the Law of Total Probability:

P (A) =
∑
n1

P (A|N1 = n1) ∗ PN1 (n1) (5)

Which corresponds to the definition of expectation:
P (A) = E[(1 − p)N1 ] (6)

We use the Law of Iterated Expectation [10] and obtain:
P (A) = E[E[(1 − p)N1 |N ]] (7)

Given that N1 ∼ Binomial (N ,q) and using its Moment-Generating
Function, we can simplify the expression to:

E[(1 − p)N1 |N ] = (1 − q + q ∗ (1 − p))N (8)
Replacing 8 in 7 we can obtain:

P (A) = E[(1 − qp)N ] (9)

Finally, applying the definition of expectation we conclude that:

P (A) =
∑
N

(1 − qp)n ∗ PN (N = n) (10)

It is worth noting that Equation 10 represents only the probabil-
ity of detection when the event occurs. However, power outages
are a stochastic process that occur over time and at a certain rate.
According to our dataset, during peak hours Nairobi experiences
larger rates of outages compared to other times of day. This phe-
nomenon can be modeled as a non-homogeneous Poisson process
(N (t ) : t ≥ 0), where the number occurrences in any time interval
is a Poisson r.v. but its intensity function λ depends on the time
interval (λ(t )) [10]. Assuming that each occurrence of an outage is
independent, the non-homogeneous Poisson process can be split
into two events, undetected and detected outages, so that the count-
ing process is bounded by their individual probability. For detection
we can express the process as:

N (t + s ) − N (t ) ∼ Poisson

(∫ t+s

t
λ(α )Pddα

)
(11)

Where s is any given interval and the Poisson r.v. is defined as
X ∼ Poisson(λ):

PX (k ) =
e−λλk

k!
For k = 0, 1, 2, ... (12)

4 RESULTS
In this section, we examine how our model responds to variation
in parameters such as the proportion of customers with GridWatch
installed on their smartphone, the ability of GridWatch to identify
outages through changes in available WiFi networks, and the neigh-
borhoods in which the system would be deployed. We begin with a
simplified model and progressively add the complexity that arises
from a widely-distributed, crowdsourced system.
4.1 Detection with varying app accuracy
We begin with a simple model where GridWatch devices are always
plugged in and not moving around. As mentioned in Section 3.2,
Equation 10 represents the probability of an undetected outage (1−
Pd ) given that the event occurred. Figure 4 shows the probability of
detection (Pd ) at different levels of the distribution grid in the entire
city of Nairobi. In this simple formulation, the model considers a
low-accuracy GridWatch app (Figure 4(a.), 10% accurate) and a
high-accuracy GridWatch app (Figure 4(b.), 100% accurate). Taken
together, these show the envelope of deployment density needed
to detect different types of electricity outages throughout Nairobi,
showing the dramatic effects of app accuracy and deployment size
on the probability of outage detection.
4.2 Detection using changes in available WiFi
To better understand the interplay between customers, their phones,
and power outages, it is important to add complexity to our model.
We begin by taking into account the time-varying occurrence of
outages – to do this, we incorporate a Poisson process as described
in Equation 11. We also incorporate time-varying customer charg-
ing patterns from the StudentLife dataset, seen in Figure 3, as our
parameter pc . With this addition, a GridWatch app that solely lever-
ages the charge state sensor to detect outages becomes substantially
less effective. However, the GridWatch app is not limited to detect-
ing outages only when the phone is charging; it can also monitor
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Figure 4: Probability of detecting outages at different tiers of
the power distribution grid at different proportions of cus-
tomers with GridWatch. Detection when the application ac-
curacy is (a.) 10% and (b.) 100% given that the users were af-
fected and have GridWatch installed.
changes in available wireless networks to detect outages, though
this detection may have lower accuracy.

With a more realistic and complex model, we seek to quantify
the implications of the lower accuracy of detecting outages when
phones are not charging (i.e., detection via changes in WiFi net-
works). Time-varying outage arrivals also enable setting an inter-
mediate target; for the remainder of our experiments, we set a goal
of detecting 80% of electricity outages. Figure 5 shows results of this
analysis for a particular neighborhood of Nairobi, Embakasi South.
As expected, increasing the number of GridWatch users as well as
improving the accuracy of the WiFi detection method each improve
the probability of detection. Larger incremental gains in probability
are observed at low penetrations of the GridWatch app and at low
accuracy of theWiFi detection method. Thus, for a typical operating
regime prior to wide deployment, improvements in engineering and
app adoption have relatively larger returns to system performance.
4.3 Detection in different neighborhoods
To get a sense for the effects of underlying grid topology and neigh-
borhood characteristics, we evaluated our model in two neighbor-
hoods of Nairobi with different density and income levels: West-
lands (sparser and higher income) and Embakasi South (denser and
lower income). Westlands reports faults four times more often than
Embakasi South and the average fault in Westlands lasts 15% longer.
In contrast, Embakasi South reports on average twice as many
households affected per outage. Figure 6 compares the probability
of meeting our detection target (detecting 80% of outages) between
the two neighborhoods. For this experiment, the WiFi detection
accuracy was set to a conservative 50%. As a result, even though
Westlands has a higher frequency of outages, only 20% of the house-
holds affected must have GridWatch installed to meet our detection
target. In contrast, for the same target, Embakasi South would re-
quire 70% of affected households to have GridWatch installed. This
demonstrates that neighborhood infrastructure and characteristics
can have a significant effect on the number of observation points
needed – a more than 3x difference in deployment penetration!

Figure 5: Probability of detecting 80% of the outages in Em-
bakasi South, Nairobi, using different accuracy levels for
outage detection via changes in available WiFi networks.

Figure 6: Comparison of the proportions of customers
needed to install the GridWatch app to detect at least 80%
of outages with 50% accuracy of outage detection via WiFi.

5 CONCLUSIONS AND FUTUREWORK
In this work, we showed that utilities worldwide struggle with mea-
suring electricity reliability on par with the experience of their cus-
tomers. We explored the potential of a novel system, GridWatch, for
automatically detecting electricity outages using customer smart-
phones and analyzed the question of how many observation points
are needed in different neighborhoods and with varying levels of
detection accuracy considering user charging patterns. As we con-
tinue this work, we will aim to collect better data about smartphone
usage, the availability of WiFi networks, and the accuracy of Grid-
Watch in a real deployment in our target setting. We believe that
this crowdsourcing approach and others like it have enormous po-
tential for impact, and that our work can help to guide deployment
efforts and improve the reliability of electricity grids in challenging
environments.
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