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ABSTRACT
The deployment of solar home systems – consisting of a photo-
voltaic panel, battery, and a few appliances – is increasing rapidly
in low- and middle-income economies. The simplicity of these sys-
tems has made them easy to deploy for customers without access
to electricity who are far from centralized grids. However, sizing
of solar PVs and storage capacity is challenging and error-prone,
which in practical terms manifests as a fully-charged battery by
midday - resulting in a curtailment of more than 30% of potential
electricity. This represents a loss of valuable energy that could have
been supplied to nearby homes without solar home systems. Prior
work has proposed interconnecting existing solar home systems to
increase electricity access. In this work, we analyze the problem of
connecting a solar home system with other passive nodes, consid-
ering excess energy, the cost of connection, and the payback period.
Using datasets of actual consumption, generation, and structure
locations from Western Kenya, we show that electricity access in
some communities can be increased by more than 3x.
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1 INTRODUCTION
Energy access plays a fundamental role in the socioeconomic devel-
opment of communities in rural areas of low- and middle-income
economies [15]. Today, one billion people have no access to electric-
ity and even though the UN Sustainable Development Goal 7 has
redefined the way we ensure universal access, affordability and pol-
icy remain the key challenges to keep the pace required to meet the
2030 target [3, 7]. Figure 1 shows the trend of renewable generation
in different regions of the world, excluding high-income economies
in America, Europe, and Asia, and hydroelectric generation [13].
All the regions have experienced more than a 3x increase in renew-
able sources primarily driven by the large adoption of distributed
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Figure 1: Electricity production from non-hydro renewable
sources [2]. SSA: Sub-Saharan Africa; EAP: East Asia and Pa-
cific; LAC: Latin America and Caribbean; MNA: Middle East
and North Africa; ECA: Europe and Central Asia.

solar systems since 2012. It is estimated that solar photo-voltaic
(PV) decentralized systems, which range from stand-alone off-grid
solar (OGS) devices to solar mini-grids, will provide energy access
to about 60% of non-electrified rural areas by 2030 [3].

Even though OGS and mini-grids offer higher Levelized Cost of
Electricity (LCOE) in comparison to access through centralized grid
extension, for remote rural areas they represent a cost-effective
and eco-friendly solution. Since 2010, OGS devices have shown
a compound annual growth rate near 60% with cumulative sales
of more than 130 million devices, consisting of pico solar (solar
lights of less than 11Wp), plug-and-play Solar Home Systems (SHS),
and component-based systems (SHS with components compiled
independently) [5]. This emerging sector is predominantly located
in East Africa (86%) and mainly incentivized by business models
such as Pay as You Go (PAYGO) which allows a household to make
a downpayment followed by periodic partial payments to lease
or purchase the device. However, remote communities in general
have very low incomes and so a downpayment may still be unaf-
fordable [1]. This represents a critical barrier to reaching universal
access throughout these communities where electrification needs
to advance four times faster to meet the 2030 goal.

The SHS, consisting of small PV panels and a battery, have been
widely deployed in East Africa. Their simplicity has made them
affordable even for households in middle or lower income classes.
However, sizing of solar PVs and storage capacity is a challenging
and error-prone activity [16], which in practical terms manifests
as a full battery by midday - resulting in a curtailment of ∼30%
[18]. There has been prior work on bottom-up approaches that
connect already available SHSes to increase electricity access. In this
work, we analyze different factors that could govern the decision
to connect two homes and evaluate how much improvements in
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electrification can be made using only existing SHS systems. In
doing so, we make the following contributions:
SHSDataAnalysis:Weanalyze empirical data on solar generation,
electricity consumption, and structure locations from 1000 sites
over a 23-month period in Homa Bay County in Western Kenya.
Our analysis results in probability distributions over both solar
generation and energy consumption.
Decision Problem for ConnectingWe present a basic decision
problem for connecting a SHS node with a passive node with or
without a battery. We consider excess energy, levelized cost of
electricity, and payback period while formulating this problem.
Implementation and Evaluation We leverage our probability
distributions for connecting SHSes with neighbouring nodes. We
show that by sharing the excess of energy , the electrification can
be increased by more than 3x in many clusters of structures.

2 RELATEDWORK
Central grids have failed to bring electricity to 27% of rural com-
munities worldwide [1]. Traditional grid extensions typically take
years to construct, incur large expenses to the electrical utility, and
are difficult to realize in many remote areas (e.g. those with difficult
terrain). For these reasons, it is expected that only 30% of rural
areas could be added to the grid [1, 21].

There is a large number of different approaches for rural elec-
trification [20], out of which, three of them are either widely used
or seem to be gaining significant attention, namely: i) SHS: this
type of system consists of PV panels and a battery. Their simplic-
ity and mobile money-based payment schemes have made them
affordable even for households in middle or lower income classes;
ii) Micro-grids: they are specifically designed to meet the commu-
nity demand, but require professional planning and a large upfront
capital investment; and iii) Swarm (or peer-to-peer) grids: this is
a bottom-up approach that consists of connecting already available
power supply units (e.g., SHS). Advocates of this solution [19, 24]
see them as an alternative for social development, since it allows
each household to decide when and how much to invest and sup-
ply to the community grid [22, 23]. In [4] the authors evaluate the
process of forming coalitions to share energy. Modelling the so-
cial efficiency of these systems, they assess cost-sharing principles
using hedonic coalition formation games.

This paper describes a solution that is midway between a swarm
and a micro-grid. It is different from micro-grids in that it does not
require significant capital investment, but also different from swarm
grids in that we do not propose to have a completely uncontrolled
and organic interconnection between houses – as described by most
researchers in the area, e.g., [8, 18, 25]-. This work proposes that
before connecting two households, grid operators should consider
the daily consumption data from existing SHS, the distance to the
neighboring house, the ability to supply the load of that node, and
the ability to pay back the cost of the connection. Even though we
are not proposing an explicit shared energy storage investment al-
gorithm [17] which uses cooperative game theory, our collaborative
consumption approach can help households to reduce the financial
barrier to access electricity infrastructure in rural communities.

Figure 2: Clusters of average daily consumption. The legend
provides cluster size (in %) and average yearly consumption.

3 METHODOLOGY
Our work addresses the problem of determining when to connect
a passive (non-generating) node, with and without a battery, to
an existing SHS. We use the location, energy consumption, and
generation data to compute probability distribution for energy
consumption and solar generation. We next create a model for
estimating the solar generation potential, which is used to calculate
the excess energy available. We next model the distribution costs
for connecting different homes. Finally, we present the algorithm
for connecting SHS with passive nodes that leverages the above
distributions and cost model.

3.1 SHS Energy Data Analysis
Figure 2 illustrates the average daily consumption of five consump-
tion profiles that were found using agglomerative hierarchical clus-
tering techniques [26]. The largest proportion of SHS users (37.3%)
consume on average only 7.9 kWh/year whereas only 6.6% consume
36.8 kWh. Besides the high disparity in aggregated consumption,
we observe a common spike in consumption across all the clusters
during the evening and a substantial difference in the consumption
patterns during the day. High consumers are more active in off-peak
hours possibly due to the use of additional appliances such as fans,
TVs, and radios. To model the spatial distribution of households for
our experiments, we use geographic location of more than 360K
structures in Homa Bay County obtained from satellite imagery.
We assume that each location corresponds to the location of one
household and found k = 20 as the optimal number of independent
clusters using yhr k-Means algorithm and "the elbow method".

One of the key insights of our approach is that the SHS are not
generating themaximum amount of energy, which our data analysis
shows can be 4x less than expected. As the energy consumption for
the homes is very low, the solar panels produce only the amount of
energy needed to fully recharge batteries after nightly use. Figure
3 illustrates this behavior, where the solar panel starts charging
the depleted battery at the start of the day and generation reduces
as the day progresses and battery becomes fully charged. If the
battery was depleted significantly or there was more demand, the
solar panel will potentially produce throughout the day.

3.2 Estimating Solar Generation Potential
In order to tap into the extra solar generation potential, we need
to estimate the maximum solar generation potential for an SHS.

269



Like a Good Neighbor, Solar is There e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA

Figure 3: Clusters of Average Daily Generation. Black lines
show clusters of daily average generation in a thousand SHS.
The red line shows the average solar generation potential for
a 50W PV solar site obtained from PVWatts.

One option is to use physical models for solar performance that
give an estimate of solar generation potential based on location,
weather, and sites’ physical characteristics. However, this is a very
complex process and outside the scope of this paper. Instead, we use
a solar PV generation model, PVWatts, that gives hourly generation
estimates for any location on earth for a typical meteorological year
(TMY) with a reported accuracy of 20% [6]. It works well for our
approach as it only requires an estimate of annual solar generation
potential rather than real-time generation values.

The PVWatts model takes latitude, longitude, system capacity,
tilt, orientation, and system losses as the input. We specify the solar
site location from structure location data, system capacity to be 50W,
and system losses to be 10%, a typical value for solar systems [14].
As the SHS are adopted and deployed in an organic manner, the
tilt and orientation angles for solar panels can be arbitrary and
are unknown. A prior study suggests the ideal tilt and orientation
for modules in Kenya to be 4°and south-facing, respectively [14].
However, to capture the randomness in deployment characteristics,
we generate the tilt using a normal distribution (µ=4, σ=2) giving
us a range of (0-14°) and set the orientation to be south-facing.

3.3 Distribution Costs
To construct a peer-to-peer solar energy network, we consider
three types of households: active nodes, passive nodes with storage,
and passive nodes without storage. Active nodes correspond to
households that own the 50W SHS. Passive nodes with storage only
have a 17Ah 12V lead-acid battery that connects directly to the
solar panel of neighboring SHS and stores energy on-site. Passive
nodes without storage tap to the neighboring SHS battery instead of
the solar PV panel which eliminates the cost of battery and charge
controller but limits consumption, due to the maximum depth of
discharge limit of 50% for these batteries.

The cost of a new connection depends on the type of passive
node being connected. Non-battery nodes need only the power
line and a ready board; nodes with storage require additionally a
battery and charge controller. Even though batteries account for a
large proportion of the system cost, both scenarios reduce the cost
in terms of the solar PV panel and the high upfront payment. In
addition, a reasonable option for distribution cables is a 14 AWG
aluminum cable which costs approximately $0.0578 per meter [11].

Algorithm 1 SHS Connection Algorithm
Require: structure locations, no. o f SHS,payback threshold Tth
1: create clusters o f structures based on location
2: pick all structures in a random cluster
3: compute distance matrix , ∀ homes ∈ structures
4: randomly assiдn available SHS to structures
5: randomly assiдn passive nodes to remaininд homes
6: for (each SHS) do
7: randomly assiдn consumption and дeneration pro f iles
8: compute excess дeneration f or each home
9: дet closest unconnected node and assiдn consumption
10: calculate the monthly enerдy payment and wire losses
11: calculate payback time Tpayback
12: if (Tpayback < Tth & excess > 0) then
13: connect the node, set distance to inf inity
14: compute excess enerдy af ter connectinд the node
15: дo back to Step 9
16: дo back to Step 9
17: calculate total no. o f connections

3.4 SHS Connection Algorithm
Algorithm 1 illustrates the sequence of steps to determine the abil-
ity of a SHS to connect and share electricity with other passive
nodes. Given the non-overlapping clusters of structure locations,
we randomly select a cluster and locations for SHS based on the
proportion of active nodes. The remaining structures within the
selected cluster are randomly assigned and split into passive nodes
with and without batteries. We give consumption profiles to each
node according to the distribution shown in figure 2. For each SHS,
we evaluate if the nearest node can be networked taking into ac-
count excess of generation available, wire losses, and payback time
in an iterative manner which produces a star topology. Even though
this might be prone to wastage of extra energy and reliability is-
sues, the simplicity of this network topology is a common choice in
real swarm electrification scenarios. We run experiments with this
algorithm 1000 times using random assignments of nodes, clusters,
and consumption profiles. This approach allows us to reduce bias
to a specific scenario and generalize our results. The impact of the
battery’s state of health, the decreasing cost of solar PVs, and the
reliability of connections under accidents or natural disasters are
out of the scope of this paper and may be future work.

4 RESULTS
In this section, we vary simulation parameters such as payback time,
proportion of passive nodes without storage, and cluster density.
We examine the impact of these parameters in electrification and
evaluate the opportunities to use this approach in real settings.

4.1 Electrification with varying payback time
We compute electrification rate with varying number of months to
pay back the distribution costs.We assume that passive nodes would
spend around 50 USD per year for lighting [10] and an additional
cost for the electricity consumed. Since passive nodes with storage
have similar behavior and a comparable infrastructure cost, we
assume that the electricity cost is similar to the solar PV off-grid
LCOE of $0.37/kWh approximately [1]. In contrast, we assume
non-battery nodes are charged $0.685/kWh, which is calculated
using 500 USD average cost of 50W SHS [12], 8 hours of daily solar
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Figure 4: Percentage of Improvement in electrification as
payback time increases. Improvements of more than 3.5x
are observed as payback time exceeds 26 months. Incre-
ments in electrification are driven by consumption profiles.

generation, and five years of operation due to lead-acid battery life
[9]. Figure 4 illustrates the results of the simulation where each line
represents a different proportion of SHS in the region of analysis.
We observe that after 26 months of payback time, the electrification
rate reaches the maximum possible and shows an increment of
approximately 3.5x in comparison to the initial rate.We also observe
two dramatic increases in electrification, one around the 6th and
20th month. We believe that the first conservative increment is
driven by the small percentage of high consumers that we found in
the consumption profiles. These consumers have a higher monthly
electricity bill which allows them to pay back the distribution costs
in a shorter period. However, given the small proportion of these
users, the increment of electrification is also small. Similarly, the
second increment shows that the bulk of nodes have a consumption
profile that allows them to start paying the costs after the 20th
month and the electrification is maximized after the 26th.

4.2 Varying nodes without storage
To better understand the impact of the of the two different kinds
of passive nodes, we evaluate the possible electrification rate at
different proportions of non-battery households. Even though these
nodes are significantly less expensive than the ones with storage,
they present limitations due to the depth of discharge allowed in the
battery which constrains the number of nodes to which the active
node can supply electricity. Figure 5 shows the results of varying
this parameter, where each line shows a different proportion of
SHS and the x-axis is the variation in the proportion of non-battery
nodes. As a result, higher proportions of these nodes significantly
reduce the electrification rate and seem to have more relevance at
higher percentage of SHS. We also observe that with a proportion
of nodes between 15 to 50% we have a better electrification rate.

4.3 Electrification change by density
Distance between households affects the cost of low-voltage DC
lines and hence the change in electricity access in our scenarios.
In this experiment, we evaluated changes in electrification as we
consider settings with different structure densities. We randomly
select clusters of structures with large, average, and small numbers
of households within 200 meters and calculate the distance matrix
with the 1000 closest structures. Using this distance matrix and the

Figure 5: Impact of passive nodes without batteries. Each
line represents a different proportion of SHS. Non-battery
nodes share the battery with SHS and the ability to connect
more nodes is limited by the storage capacity and depth of
discharge, reducing electrification.
observation that Homa Bay has approximately 15k SHS, accounting
for approximately 1.5% of all households, we present the results in
Table 1. As expected, in dense clusters, it is easier to connect nearby
nodes more cost-effectively as opposed to sparse settings where
the cost of distribution and wire losses may be unaffordable. We
observe that dense communities would experience an increase in
electrified households of 4.1x as compared to sparse communities
that would realize an increase of only 2.7x.
Table 1: Comparison of electrification at different geo-
graphic densities. These experiments begin with 1.5% of
households with electricity.

Structure Distribution Electrification Increase [%]
Dense 4.67 (4.1x)
Average 4.30 (3.8x)
Sparse 2.59 (2.7x)

5 CONCLUSIONS AND FUTUREWORK
In this work, we showed that using the excess of generation in stand-
alone solar home systems efficiently, access to electricity could be
expanded in rural areas where traditional grid connections are non-
viable. We explored the potential of this energy sharing mechanism
considering the ability to supply the load of nearby households,
payback period for the distribution costs, and the geographic den-
sity of these settings. However, we believe that our approach can
be improved if we include additional physical characteristics of the
system components, external weather factors, reliability constraints
based on time of usage, and more efficient connection algorithms.

As we continue this work, we will aim to incorporate battery
storage models to evaluate the state of charge at different hours
of the day and more sophisticated connection algorithms based
on graph theory. These new features will allow us to better assess
energy access using the World Bank Multi-Tier Framework [7]. We
also plan to collect data with a higher granularity to evaluate the
implementation of more intelligent techniques such as demand
response, energy trading, and real-time forecasting that increase
the efficiency of these systems and can ultimately improve access
in rural communities.
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