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ABSTRACT
The electrification of transport is a crucial step towards decarboniz-
ing energy use and meeting climate goals. However, the increased
penetration of electric vehicles also drives substantial additional
load on the electricity grid; failure to manage this load can result
in higher costs and reduced reliability of electricity. In this study,
we present a novel online, auction-based technique to manage the
charging of electric vehicles. Our technique draws insight from
the cloud computing literature, making use of the concept of soft
deadlines to ensure high satisfaction among users, reduced costs
for charging infrastructure providers, and maximum flexibility for
the electricity system. We evaluate our technique with a range of
dynamics possible on typical electricity grids, including variable
electricity tariffs and deployment of solar photovoltaic generation.
Additionally, we consider vehicle-to-vehicle charging, an emerging
paradigm for peer-to-peer energy transfer. Compared to uncon-
trolled charging and two typically deployed algorithms, our results
show improved cost and performance in every scenario, with a re-
duction in costs of 3.5% to 12% compared to the baseline controlled
approaches.
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1 INTRODUCTION
The electrification of the transportation sector brings together two
massive segments of the primary energy budget. In parallel with
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the decarbonization of the electric power sector, this transforma-
tion towards increasing penetration of electric vehicles (EVs) will
have profound impacts on the built environment, most notably on
electricity grids. According to the Global EV Outlook [1], more than
2.1 million electric vehicles were sold in 2019 with a year-on-year
sales growth above 30% since 2016. Moreover, the infrastructure
for EV charging is expanding at a rapid pace. In 2019, the number
of publicly-accessible slow and fast chargers increased by 60% in
comparison to 2018 and globally the total number of chargers is
around 7.3 million, surpassing the stock of EVs. This increased load
on electric grids from EVs leads to strain on transformers [28] in the
short-term and perhaps even bulk supply as penetration continues
to increase.

Improved control of EV charging activities is crucial to manage
this strain, enabling existing infrastructure to last longer, future
infrastructure to be planned more efficiently, and society to increase
overall sustainability. Such control aims primarily to charge the ve-
hicles during periods of low electricity demand and take advantage
of the renewable generation available. However, there is a range of
technologies with different degrees of complexity that can be used
not only to reduce this excessive demand on the grid but also to en-
able energy sharing between vehicles due to the flexibility inherent
to the storage capacity of EVs based on real-time information. These
dynamics are also present beyond energy systems. For example, in
cloud management [26, 34] and data center optimization [18, 20],
it has become fundamental to use online optimization techniques
to allocate resources in response to real-time "cost" signals and
changes in these uncertain environments.

In this paper, we present a technique for efficient online schedul-
ing of EV charging jobs on dynamic electricity grids using empirical
data [16] on EV arrivals. We draw inspiration for our technique
from the cloud computing community, where providers receive
multiple computing jobs with a variety of infrastructure require-
ments and job durations and must efficiently schedule those jobs
to run on their data centers despite error-prone predictions of job
characteristics. In particular, we build upon previous work [37]
that handles the scheduling of computing jobs under the impact of
Demand Response (DR) signals [3] and operating costs, but instead
we apply this formulation to the domain of EV charging. Similarly,
as in [37], our goal is to present an online auction mechanism to
maximize social welfare of both the facility that provides the EV
charging service as well as the EV user.

EV charge scheduling is an active area of research – we present
a discussion of related work in Section 2. In particular, deadlines for
EV charging jobs are often either predicted by algorithms based on
historical data or actively solicited from users, both often presented
as hard deadlines with substantial penalties for failure; we recognize
weaknesses in each of these approaches. Our solution differs in
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that it uses soft deadlines, which provide guidance to our algorithm
but enable increased flexibility that is valuable to meet constraints
presented by the electricity supply, enabling both improved social
welfare and reduced costs.

Further, by harnessing an online approach in addition to soft
deadlines, our algorithm can allow the charging infrastructure to
take the optimal decision one time window at the time. Increased
adoption of fluctuating renewable energy sources and the increased
deployment of variable electricity pricing schemes further call for
online algorithms that adapt to changing constraints. Others have
indeed addressed the charging problem under real-time pricing [32],
where neither accurate predictions nor distribution of future real-
time prices are available to users when making online decisions;
however, these pricing scenarios are not prevalent in practice. Our
work considers a range of dynamics on electricity systems that are
common, including variable penetration of renewable sources of
energy as well as the presence of demand response (DR) services.
For DR, electric utilities commonly use rate increases, bill credits,
or other incentives to control demand on the grid during periods
when load generation imbalances threaten the reliability of the
electricity supply.

Specifically, this work proposes a novel mathematical formula-
tion for scheduling of EV charging jobs with soft deadlines as a
foundation (Section 3). We present an online, auction-based tech-
nique for efficiently selecting jobs at each time step (Section 4).

In our evaluation (Section 5), we explore the impact of a range
of electricity supply dynamics, including i) EV charging tariffs; ii)
levels of integration with renewable sources; iii) demand response
services for the central grid; and iv) integration of vehicle-to-vehicle
charging techniques. We show that our auction-based technique
results in lower user costs than commonly-used algorithms in all
cases considered. Last, we conclude by discussing future directions
for this work.

2 RELATEDWORK
More widespread adoption of EVs certainly causes higher demand
on central grids, however, previous work, e.g. [22], have already
shown that while charging EVswill indeed further stress the current
central grid, there is plenty of flexibility when deciding when and
at which power rate to charge the EVs.

In sight of such flexibility, there is vast literature aimed at opti-
mization and scheduling strategies for charging EVs (e.g. [8, 21, 31,
35] to name a few) and more recently Schlund et al. [23] explored
the implications for large scale EV fleets. In terms of online design
mechanisms there is significant literature with applications in EV
but with less emphasis on improving social welfare [24, 30, 36] than
in total valuation of served jobs [2, 4, 6, 19, 25, 27].

In [30], the authors propose an online auction framework for
the park-and-charge scenario in which the goal is to maximize
social welfare and user satisfaction; however, this work does not
consider grid dynamics such as DR services, EV charging tariffs,
or vehicle-to-vehicle energy sharing. In [25], the authors propose
an online recommendation system for charging EVs based on a
bid-price control policy. The goal is to provide spatial and temporal
scheduling for EVs that have freedom to make decisions about
charging at a certain facility with a given charging price or reject

the offer from the charging network operator and reduce the energy
demand or move to a different facility. Even though this work
includes changes in tariffs, it does not consider soft deadlines for
disconnection given the flexibility that charging jobs may offer.

Most research has tried to create an optimal scheduler by pre-
dicting when a user is going to disconnect [16, 29]; however, this
typically turns out to be far from accurate, withmean average errors
of almost two hours in many scenarios. To put this in perspective,
two hours is enough to charge a mid-sized EV between 35% to 50%
of its full capacity.

Therefore, given the inaccuracies when predicting disconnection
time, many EV charging facilities opted to pass the burden to EV
users and directly ask them for how long they estimate their EV
will be connected (e.g. [16]). However, users can handle that pre-
rogative as a free card to set deadlines that are ultraconservative in
order to guarantee that their EVs will be fully charged before their
departure; in fact, average error was nearly worse than the one
output by the prediction algorithms, hence increasing even further
the operational expenditures from the charging facility operator.

By using soft deadlines, our approach targets a middle ground
between the poor satisfaction performance or greediness of deadline
prediction techniques and the overuse of charging resources and
cumbersome nature of user-entered deadlines. We draw this insight
from the cloud computing literature [37], where the authors propose
an online auction for dynamic cloud resource provisioning with
the presence of emergency demand response programs. The main
insight is that similar to datacenters where computing jobs can use
a variety of resources to complete a task, EVs can be charged with a
dynamic rate and can tolerate soft deadlines given by the idle time
after the vehicle has completely charged. In addition, datacenter
and EV charging facilities are ideal candidates for DR programs due
to their high electricity demand and the elastic nature of their loads;
this can enhance the reliability and sustainability of the power grid
if the consumption is allocated efficiently.

In this work, we closely follow the formulation presented in [37],
with a key difference that we must adapt our scheduling selection
algorithm to handle the online variability of charging rates that is
present at the beginning of the provisioning. In order to overcome
this difference, we modify the schedule selection mechanism using
an existing dynamic programming formulation for the Minimum
Cost Maximal Knapsack problem [5]. We explain this in detail in
the coming sections.

3 MODELS AND FORMULATION
In this section, we describe our system and define our problem for-
mulation and algorithms. We present an adaptation of the problem
formulation presented in [37] where the authors develop an online
auction mechanism to schedule computing jobs given of Demand
Response signals (DR) and the desire to reduce operating costs.
Similarly, our goal is to present an online auction mechanism to
maximize social welfare among the charging facility and the EV
users using a soft deadline to meet the charging demand.
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3.1 System Settings and Models
We study the charging scheduling problem in an online fashion
with the design of an auction mechanism. We provide the following
components for our problem formulation:

Time Horizon.We consider a time-slotted system model of T
time slots of equal length κ. We define a prediction window ofW
in which the electricity prices are available.

Charging Jobs. There are I EV users that arrive dynamically
to the charging facility. Upon arrival, each charging job i provides
its arrival timestamp ti , energy demand σi , a bidding value bi if
the charging session is completed before the deadline di , and a
non-decreasing penalty function for passing the deadline with τi
as the violation:

ρi (τi ) =

{
ρci (τi ), if τi ∈ [0,T − di ]

+∞, otherwise
(1)

with ρci (0) = 0 and τi representing the number of time slots after
passing the deadline. The completion time is given by di + τi and
the corresponding bidding price is bi − ρi (τi ). The charging job’s
bid can be expressed as Bi = {ti ,σi ,bi ,di , ρi (τi )}.

Charging Stations. Upon arrival, each charging job is associ-
ated to one EV supply equipment (EVSE) or charging station that
supports J different charging rates. A facility is composed of mul-
tiple EVSEs so the maximal number of charging sessions that can
be attended at any time is C . Each station can provide a different
energy level Ej based on its respective charging rate j.

Operating cost. We model the energy consumption cost as the
operating cost for the charging facility. It depends on the power
levels used in each EVSE and the electricity price ht at time t
provided by the power utility company. The electricity price is
known during the prediction windowW before the auction starts.
The cost function associated to the charging facility can be defined
as:

ft (et ) =

{
htet , if et ≤ Ωtκ

+∞, otherwise
(2)

where et and Ωt represent the aggregated energy drawn from
the grid and the power cap given by a demand response signal
respectively.

Decision Variables. This formulation uses xi ∈ {0, 1} to repre-
sent whether to accept the charging job i after the bidding; yit ∈

{0, 1} indicates whether to charge the job i at the time slot t ; and
zi jt ∈ {0, 1} whether to select the rate j to charge the job i at the
time slot t .

In this work, we define the auctioneer and bidders as the charging
facility and EV users (charging jobs) i respectively which request σi
amount of energy with a tolerant deadline di . The facility computes
the power allocation at each t based on xi , yi and zi jt ; then, each
EV user pays πi for their charging session based on the auction
results. We assume the bidders submit a truthful valuation as a
dominant strategy which leads to a truthful auction.

3.2 Problem Formulation
Social welfare. Each EV user aims to maximize its own utility and
it is assumed that they are selfish and rational. Using the true valua-
tionvi and penalty ρ ′i (τi ) for job i’s bid, the utility for each i is given
byui (bi−ρi (τi )) = vixi−ρ ′i (τi )−πi . Similarly, the charging facility’s

utility is defined as the difference between the aggregated EV user’s
payments and the electricity cost function:

∑
i ∈[I ] πi −

∑
t ∈T ft (et ).

Assuming truthful bidding, the social welfare is defined as the ag-
gregated utility of the EV users and the charging facility. Since
the aggregated payments from EVs and the facility πi cancel them-
selves, summing them up cancels the payment, and leads to social
welfare as follows:

∑
i ∈[I ](vixi − ρ ′i (τi )) −

∑
t ∈T ft (et ) .

Having the above, we formulate an optimization problem as
follows:

max
∑

i ∈[I ]

(
bixi − ρi (τi )

)
−

∑
t ∈[T ]

ft (et ) (3)

s. t. yit t ≤ di + τi ,∀t ∈ [T ],∀i ∈ [I ] : t ≥ ti , (3a)
σixi ≤

∑
t ∈[T ] : t ≥ti

∑
j ∈[J ]

zi jtEj ,∀i ∈ [I ], (3b)

zi jt ≤ yit ,∀i ∈ [I ],∀j ∈ [J ],∀t ∈ [T ], (3c)∑
i ∈[I ] : t ≥ti

yit ≤ C,∀t ∈ [T ], (3d)∑
i ∈[I ] : t ≥ti

∑
j ∈[J ]

zi jtEj ≤ et ,∀t ∈ [T ], (3e)∑
j ∈[J ]

zi jt ≤ 1,∀i ∈ [I ],∀t ∈ [T ], (3f)

xi ∈ {0, 1},yit ∈ {0, 1}, zi jt ∈ {0, 1}, τi ∈ {0, 1, 2, ...,W },

et ≥ 0,∀i ∈ [I ],∀j ∈ [J ],∀t ∈ [T ], (3g)

The objective is to maximize social welfare in the EV charging
ecosystem where constraint (3a) ensures that a charging job is
scheduled to run upon arrival. Constraint (3b) guarantees that
the energy requirement from job i can be met during the time
horizon and with the energy levels selected. Constraint (3c) records
the nature of the decision variables. Constraint (3d) restricts the
number of jobs allocated at any given time to the maximal number
of charging sessions allowed in the facility. Constraint (3e) records
the total energy consumption into et . Constraint (3f) ensures that
only one set point is selected for each charging job at any given t .

Challenges. Solving the above problem is non-trivial and we
confront fundamental challenges. We are in an “online” setting
where job arrivals and each job’s information is unknown to us.
(1) Any charging job i arrives dynamically at ti . Its information of
(ti ,di ,bi ,σi , ρ(·)) cannot be known a priori, and can only be known
as it arrives. (2) For the job i , at ti , the power prices in [ti ,di +W ]

are accurately predicted; the power prices beyond di +W remain
unknown. That is, at ti , ft (·), ∀t ∈ [ti ,di +W ] is known, and is
not known beyond. (3) As soon as the job i arrives, its decision of
(xi ,yit , zi jt , τi , et ), ∀j, ∀t ∈ [ti ,di +W ] is made. In particular, we
do not re-calculate yit and et as time goes; rather, we determine
yit and et , ∀t ∈ [ti ,di +W ] at once at ti . (4) The following inputs
are all known beforehand: κ,W , C , and Ej , ∀j ∈ [J ]. However, [T ]
does not have to be known beforehand.

Equivalent Reformulation. In order to overcome the afore-
mentioned challenges and following the approach in [37], we use
the primal-dual algorithm design technique. However, it is not pos-
sible to apply this technique directly to the formulation in (3) since
it involves unconventional constraints to model the EV charging
soft-deadline [37]. In addition, we can leverage the key insight that
the electricity price is often available within a prediction window
that often occurs when commercial and industrial consumers sign
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an agreement with a power utility to have variable electricity tar-
iffs but not necessarily in real time. Consequently, we reformulate
our approach as an online charging schedule selection problem to
handle the presence of the penalty function for the soft deadlines
in (3).

Let θi be the set of feasible time schedules and energy levels
for job i to accomplish the energy demand and l one entry of θi
that contains the decision variables for each time and the deadline
violation of that specific schedule
l : ({xi }, {yit }∀t ∈[T ], {zi jt }∀t ∈[T ],∀j ∈[J ], τi ) that satisfies constraints
(3a) and (3b). This leads to the decision variable xil that indicates
whether the charging job is accepted and attended according to the
selected schedule l ∈ θi and bil is the bid price based on schedule l .
T (l) and J (l) represent the set of time slots that dictate when the
charging job is attended and what set point is used in schedule l .
The new formulation is as follows:

max
∑

i ∈[I ]

∑
l ∈θi

bilxil −
∑
t ∈T

ft (et ) (4)

s. t.
∑
l ∈θi

xil ≤ 1,∀i ∈ [I ] (4a)∑
i ∈[I ]

∑
l :t ∈T (l ) xil ≤ C,∀t ∈ [T ] (4b)∑

i ∈[I ]

∑
l :t ∈T (l )

∑
j :j ∈J (l )

xil · Ej ≤ et ,∀t ∈ [T ] (4c)

xil ∈ {0, 1}, et ≥ 0,∀l ∈ θi ,∀t ∈ [T ],∀i ∈ [I ] (4d)

Constraint (4a) ensures that at most one schedule is selected for
the charging session, and constraints (4b) (4c) are equivalent to (3d)
and (3e) respectively.

Dual Problem Formulation. Having now the formulation in
(4a) we derive the formulation of the dual problem [14] which
requires the definition of the non-negative dual variables ui , αt
and qt for each constraint (4a), (4b), and (4c). It also requires the
relaxation of xil ∈ {0, 1} to xil ≥ 0. The dual formulation is as
follows:

min
∑

i ∈[I ]
ui +

∑
t ∈[T ]

αtC +
∑
t ∈[T ] supet ≥0{qtet − ft (et )} (5)

s. t. ui ≥ bil −
∑

t ∈T (l )
(αt + qt

∑
j ∈J (l )

Ej ),∀i ∈ [I ],∀l ∈ θi (5a)

ui ,αt ,qt ≥ 0,∀t ∈ [T ],∀i ∈ [I ] (5b)

4 ONLINE MECHANISM DESIGN
The goal of this online auction design is to determine if a charging
job is accepted and attended during a feasible schedule that max-
imizes the utility for the charging facility and the EV user. This
feasible online scheduler must consider the power constraints de-
rived by the DR signal. If a charging job is accepted (xil = 1), yit
reflects the time slots in which the EV would be charging and et
is updated based on the aggregated EV charging consumption. Ac-
cording to our dual formulation presented in the previous section,
the auction winner is determined by the value of ui in constraint
(5a). Since ui is non-negative, it can be the maximum of 0 and the
right hand side of the constraint. It also indicates that the charging
facility would accept its bid only if ui > 0 and use the schedule that
maximizes the right hand side of (5a).

Similarly as in [37], if we interpret ui , αt , and qt as the EV user’s
utility, unit capital price, and unit electricity price at time t , then
the term

∑
t ∈T (l )(αt + qt

∑
j ∈J (l ) Ej ) in the right hand side of (5a)

represents the total cost of the charging job i using the schedule l ;
therefore, it assures that i is always accepted and scheduled with the
l that maximizes the utility and social welfare as well as guarantees
truthfulness.

The design of the dual variables αt and qt is as follows:

qt = ht (6)

αt = (L − ht )
(
U−ht
L−ht

) zi jt Ej
max (Ej ) (7)

WhereU = maxi ∈[I ]:σi>0
{
bi
σi

}
andL = mini ∈[I ]:σi>0

{
bi−ρi (T−di )

σi

}
,

and L > ht . Equation (6) refers to the interpretation of qt as the unit
electricity price. For (7),U and L represent maximum and minimum
value per unit of electricity per unit of time so the unit capital price
αt starts at L−ht when the ratio between the selected energy level
and the maximum available level j is small and grows exponentially
up toU − ht when the ratio tends to 1.

Even though the new formulation allows us to use the primal-
dual technique, it generates an exponential number of options to
obtain an optimal schedule that maximizes social welfare. In order
to meet the demand of each charging job i , we can select multiple
time slots in T with different energy levels J .

Since we want to minimize the cost of energy levels allocated
in different time slots while ensuring the allocated energy levels
meet the requested demand σi , we define our schedule selection
as a minimum-cost maximal knapsack packing problem (MCMKP).
We use a dynamic programming (DP) algorithm proposed by [5]
which outperforms state-of-the-art mixed-integer programming
solvers and runs inO(nσi ) time and O(n + σi ) space. We adapt this
algorithm to our problem and present it in algorithm 3. OurMCMKP
receives items with the cost of using an energy level at time t , the
discrete value of Ej and the capacity of the knapsack in the form of
energy demand σi . Then it computes the knapsack for a common
time window W where tariffs are known, but penalizing more time
slots ∈ [di ,W ]. Lines 2-22 compute the MCMKP and lines 23-31
present the backtracking procedure to obtain the optimal items for
the knapsack.

Algorithm 3 is embedded in line 4 of the online scheduling algo-
rithm 2 which given the inputs in line 1, generates the input items
for the MCMKP algorithm (line 3), determines the cost of charging
in the selected time slots t ∈ T (l)(lines 6-7), evaluates if the bid is
accepted (line 8) and if so, updates the decision variables, computes
the price to be paid by the EV user and updates the et (lines 9-11).
Finally, it returns the schedule and the aforementioned variables
to the online auction algorithm 1. Algorithm 1 receives the bids
from the arriving EV charging jobs and initializes dual and primal
decision variables in line 4. Upon charging job arrival, computes
Algorithm 2(line 5) and if i’s bid is accepted, charge the setup the
set points and schedule to attend the charging session and requests
a payment πi from the EV user.

Online Algorithm.We present our algorithm as follows.
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Algorithm 1: Online Auctions
1 Input: Bidding language Bi , Ωt , ht , C .
2 Define cost function ft (et );
3 Define function αt ;
4 Initialize xi = 0,yit = 0,zi jt = 0, xil = 0, ui = 0, αt = 0,

qt = ht , et = 0,∀i ∈ [I ],∀l ∈ θi ,∀t ∈ [T ];
5 As soon as the ith charging job arrives

(xi , {yi t}, πi , {αt }, {zi jt }, {et }) =

Asch (Bi , {Ωt }, {αt }, {zi jt }, {qt }, {et });
6 if xi = 1 then
7 Accept job i’s bid;
8 Charge according to yit and zi jt ;
9 Charge πi for job i .

Algorithm 2: Scheduling Algorithm (Asch )
1 Input: Bi ,C, {Ωt }, {αt }, {zi jt }, {qt }, {et }.
2 Output: xi , {yit }, πi , {αt }, {zi jt }, {et }.
3 Add (zi jtEj ,qt , t) ∀t ∈ [ti ,T ] to set ϒ if

∃ zi jt :
∑
i ∈[I ] zi jtEj + et ≤ Ωtκ and

∑
i ∈[I ] yit ≤ C;

4 {zi jtEj } = MCMKP(ϒ,σi );
5 Let l include the t slots ∈ {zi jtEj };
6 c(t) = αt + qtzi jtEj ,∀t ∈ T (l);
7 P =

∑
t ∈T (l ) c(t);

8 if bi − P > 0 then
9 xi = 1; yit = 1; ∀t ∈ T (l); xil = 1;

10 ui = bi − P ; πi =
∑
t ∈T (l ) αt + qtzi jtEj ;

11 et = et +
∑
i ∈[I ]

∑
l :t ∈T (l )

∑
j :j ∈J (l ) xil · Ej ;

12 end
13 return xi , {yit }, πi , {αt }, {zi jt ∈ T (l)}, {et }

5 EXPERIMENTAL EVALUATIONS
In order to evaluate our online algorithm, we leverage an existing
open source simulator that provides real traces of EV charging ses-
sions and baseline offline algorithms that allow us to compare with
our implementation [15]. In addition, we simulate an EV charging
facility and implement the presence of PV-solar generation and
vehicle-to-vehicle (V2V) charging capabilities. Since those capabili-
ties can be modeled as DR signals, our formulation holds and can
be evaluated altogether with different Time-of-Use tariffs. Figure 1
illustrates the set of components that intervene in our simulation
where solar generation is usually available during day time and
V2V is allocated based on arrival of vehicles willing to perform this
function.

5.1 Datasets
EV charging data is extracted from the Caltech Adaptive Charging
Network (ACN) dataset [16]. It is composed of over 23 thousand
charging sessions that were collected between 2018 and 2019 from
54 EVSEs located at one of Caltech’s campus garages. Each charging
session includes the following fields: connection and disconnection
time, time of the last non-zero current draw recorded, amount of
energy delivered, unique identifier of the EVSE, unique identifier

Algorithm3:TheMinimum-CostMaximal Knapsack Pack-
ing Problem (MCMKP)
1 Input: Set of items with costmυ and energy level zυEυ
where υ is a decreasing index of items sorted by energy level
with a corresponding t .
Energy requirement σi .
Sums of costs Cυ =

∑
α<υmυ .

Sums of energy levels Zυ =
∑
α<υ zυEυ .

υc :Index of the first item that exceeds the energy
requirement σi .

2 Output: S∗: The optimal set of zυEυ with a corresponding t .
3 SetM[0] = 0,OPT = ∞;
4 Set Aυ [k] = 0,∀υ ∈ {υ = |ϒ|, ..., 1},∀k ∈ {k = 1, ...,σi };
5 for k=1,...,σi do
6 SetM[k] = ∞;
7 end
8 for υ = |ϒ|, ..., 1 do
9 if υ ≤ υc then

10 Set σi = max{0,σi − Zυ }, and
σi = max{0,σi − Zυ − zυEυ + 1};

11 Set tmp = minσi ≤k≤σi {M[k] +Cυ };
12 if tmp < OPT then
13 Set OPT = tmp, υ∗ = υ,

σ ∗
i = arдminσi ≤k≤σi {M[k] +Cυ∗ } + Zυ∗ ;

14 end
15 end
16 for k = σi , ..., zυEυ do
17 SetM[k] = min{M[k],M[k − Zυ ] +mυ };
18 if min{M[k],M[k − Zυ ] +mυ } = M[k − Zυ ] +mυ

then
19 Aυ [k] = 1;
20 end
21 end
22 end
23 S∗ = {1, ...,υ∗ − 1};
24 k = σ ∗

i − Zυ∗ ;
25 for υ = υ∗, ..., |ϒ| do
26 if Aυ [k] = 1 then
27 Append zυEυ to S∗ ;
28 k = k − zυEυ ;
29 end
30 end
31 return S∗

of the user, and other inputs provided by the users (e.g., energy
requested or expected departure time). Figure 2 illustrates the con-
nection and disconnection distribution throughout the day. These
events show a bimodal pattern that is commonly observed in a
workplace charging environment where EVs plug-in around 8 am
and disconnect at 5 pm.
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Figure 1: Changes in solar andV2Vproduction power and variations
in tariff prices over a 24-hour period.

Another important observation is illustrated in Figure 3, which
displays all the Caltech ACN charging events according to its du-
ration and the energy that was transferred. There is a clear line
that crosses the origin of the graph with a slope of approximately 7
kW. This corresponds to the rated power of each EVSE installed at
the campus garage, which in turn means that all the sessions that
are close to (or on) this line have no flexibility. Flexibility in EV
charging is understood as the difference between the disconnection
time and the time of last non-zero current draw recorded over the
total duration of the charging event. The higher the flexibility of
a charging event, the greater the potential to schedule charging
in a more convenient way. Figure 3 shows that most of the charg-
ing sessions are below the 7 kW line, which means that they only
drew the rated power for a short duration of time (until the EV
battery reached 100% state-of-charge), and finally entered an idle
state. This observation shows substantial opportunities to optimize
the charging session with a soft deadline approach as the charging
session may be tolerant to delays in the completion time – idle
time represents a possibility for flexibility, either reducing costs,
increasing overall satisfaction, or both.

5.2 Simulation environment
The simulation environment is built around the Caltech ACN-Sim,
an open-source, data-driven, simulator [15]. The simulator’s object-
oriented structure contains a few main objects and classes: a Sim-
ulator class, a Charging Network class, EVSE objects, EV objects,
Battery objects, and an Event Queue. The environment emulates
the real charging infrastructure and power capacities present in
the Caltech facility as well as loads the real EV charging traces
that were used to evaluate our online algorithm. This environment
provides a convenient backbone for the evaluation of EV charging
optimization algorithms, which we customized to accommodate
our auction-based formulation. Besides our algorithm implementa-
tion, a demand response signal, solar compatibility, and vehicle-to-
vehicle charge sharing mechanisms were implemented.

In addition, the ACN-Sim platform provides multiple baseline of-
fline algorithms. For our evaluation we compare our online auction

Figure 2: Distribution of hourly arrival and departure times for all
EVs in the Caltech ACN dataset.

Figure 3: Relation of charging session duration and amount of en-
ergy transferred. Energy delivered below the slope at 7kW suggests
charging sessions with some amount of idle state (flexibility).

mechanism with uncontrolled charging, an Earliest Deadline First
(EDF) policy, and a Least Laxity First (LLF) policy. These represent
common methods for charging EVs, and the implementations are
all available as part of ACN-Sim.

5.3 Demand Response Signal
While traditional DR programs are often implicit (i.e. time-of-use
tariffs), utilities have now begun to tap into other dispatchable
sources of generation such as distributed energy resources (DER) or
EVs to provide explicit support to the grid. In explicit DR schemes,
the aggregated load is traded in electricity markets and consumers
receive direct payments to change their consumption upon request.
This can be triggered by the activation of balancing services, differ-
ences in electricity prices, or a constraint on the grid (typically, on
the distribution grid).

Our analysis applies the latter approach, similar to Zweistra et
al. [38], using variation in the capacity of low-voltage transformers
as a method to emulate DR signals. For instance, this signal is
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PG&E SCE
Peak $0.2322 / kWh $0.2666 / kWh
Partial-Peak $0.1771 / kWh $0.0925 / kWh
Off-Peak $0.14903 / kWh $0.05623 / kWh
Demand Charge $19.99 / kW / month $15.51 / kW / month

LCOS V2V Solar
All-day $0.12 / kWh $0.068 / kWh

Table 1: Summary of electricity tariffs

randomly triggered during peak times, for a duration between 2
and 4 hours, and requesting a decrease of up to 40% in the total
load from EVs. In our implementation, when a demand response
signal is triggered, it only affects the available power capacity from
the main grid, allowing the other sources of energy (V2V and Solar)
to remain unaffected.

5.4 Electricity Tariffs
The time-of-use (TOU) tariffs considered in our simulation were
similar to the ones adopted by the ACN-Data research [16]. In addi-
tion to Southern California Edison (SCE) tariff rates, we also utilize
Pacific Gas and Electric (PG&E) [11] tariffs to better understand how
they would affect the cost reductions over our algorithm during
different months. The TOU rates correspond to peak, partial-peak,
and off-peak hours from May through October for PG&E and for
the whole year for SCE.

In addition, we include different tariffs for V2V and solar gener-
ation, which allow us to observe the impact of these resources in
the charging facility. For V2V we use the levelized cost of storage
(LCOS) provided in [17]. For solar, we adopt tariffs reported in [9].
Table 1 summarizes the tariffs that were used in this evaluation.

5.5 Integration with Solar Charging
The original simulator did not have any renewable energy sources,
and assumes the use of power only from the grid. In order to em-
ulate the presence of solar generation in our charging facility, we
use PVWatts [13] to estimate the solar generation potential in the
location of the charging facility. This model takes into account the
effect of system capacity, installation parameters such as tilt and
orientation, and weather conditions.

In order to size the system capacity in our charging facility
correctly, we perform a daily EV charging simulation for the entire
year of 2019 where the only source of power to charge the EVs is
the solar installation and estimate the solar capacity that provides
the generation to meet a sufficient proportion of the demand in a
decent proportion of days in 2019. Figure 4 illustrates the CDF of
the proportion of unmet EV charging demand for different solar
installation sizes. Based on the results, we choose to use 125kW
as a default installation size since it can provide enough energy to
supply 80% of the EV charging demand for approximately half of
the year. For context, Figure 1 illustrates solar generation during a
typical day in California.

5.6 Vehicle-to-Vehicle Charge Sharing
The storage capacity of EVs can also be used for other applications
thanks to bidirectional charging. These applications are known
as V2X, where X can be the Grid (a concept initially proposed by
W. Kempton [10]), a Building, or even other Vehicles. The latter

Figure 4: Impact of solar installation capacity in the proportion of
unmet demand during 2019. Each line shows different generation
sizes.

appears to be of special interest for the current application, as EVs
could exchange energy without the need of going through the grid
or the facility. A. Koufakis et al. [12] propose an offline and an online
charging scheduling algorithm with V2V energy transfer, able to
reduce costs by 3.3% and increase onsite renewable energy use by
12%. R. Zhang et al. [33] investigate flexible energy management
through active power transfer cooperation between EVs, through
different V2V matching algorithms, leading to an improvement of
the utilities of the EVs and reducing grid energy consumption.

Implementing V2V with the simulator required a few assump-
tions to be made. Firstly, we randomly selected 15% of vehicles
arriving at the charging site to participate in V2V charge sharing.
Secondly, the vehicles chosen were assumed to arrive with an ini-
tial battery charge of 80%. Thirdly, we randomly sampled battery
capacity sizes from a list of commonly available EV models [7] and
assigned the selected capacities to each V2V vehicle. The vehicles
then discharged up to 30% of their total battery capacity, until their
departure time.

5.7 Results
Cost reduction. First we evaluate the operating cost reduction for
the charging facility of our online algorithm.We compare our imple-
mentation with baseline algorithms such as uncontrolled charging
and EDF and LLF scheduling algorithms. The former two, which in
contrast to online algorithms, have information about the future.
EDF sorts EVs by departure time in increasing order and charge at
the maximum feasible rate in each timestep. EVs that are scheduled
first benefit from a higher availability of power capacity. LLF sorts
EVs by laxity, which in this case is defined as the difference between
the estimated departure time and the time that takes to charge the
EVs at the maximum rate. Higher laxity means higher flexibility in
satisfying the energy demand.

In addition, we aim to understand the impact of different renew-
able sources on the EV charging facility. We run simulations with a
monthly time-frame and calculate the monthly operating cost for
the facilities with each algorithm as well as with the presence or
absence of V2V and solar generation.
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Figure 5: Comparison of the average monthly expense for different
offline scheduling algorithms and our auction algorithm.

Figure 5 shows the average monthly expense in electricity of
the EV charging facility which includes both the electricity cost
and demand charge. Each bar represents a different scheduling
technique and the groups shows the availability or not of renew-
ables and V2V capabilities in the simulation. We observe that our
online auction algorithm outperforms other schedulers showing
cost reductions of up to 13.5% with respect to the uncontrolled
charging and from 3.5% to almost 12% with respect to EDF and LLF.
We also observe that in general the presence of solar generation
brings significant benefits to cost reduction of up to 38%. While
these specific numbers are a reflection of the differences in tariffs
used in this study, the dominant performance of our technique in
all scenarios is promising.

Impact of tariffs in the EV user’s utility. Since our auction
algorithm is truthful and the price that the charging job i pays
depends on the energy demand and electricity price, we explore
how different tariffs affect the utilityui for each charging job i that
participates in the auction. We analyze more than 90K auctions
results that were generated for simulations of the whole year of
2019. Figure 6 illustrates the CDF of the utility value obtained for
the two different electricity tariffs used in the evaluation. However,
we do not observe a significant difference between the two rates. In
addition, even though our goal is not maximizing the acceptance of
bids, we observe that approximately only 2.5% and 4.5% of bids are
rejected for SCE and PG&E tariffs respectively which is observed
when the EV user’s utility are negative.

Running time. Similarly as in the previous evaluation, using
the results for each event that triggered our auction algorithm
during the whole of 2019, we record the running time to compute
the schedules for the number of active EVs participating in the
auction at a given time t for a realistic charging facility design in
the ACN-sim. Figure 7 shows the resulting average running time for
the number of EVs that were found to be active during the whole
year. We observe that the mean time is 0.3s across different numbers
of EVs without any particular trend as the number of EVs increases.
We observe a spike for 31 EVs with a high standard error which
might be representative across all the remaining cases. Nonetheless,
these running times are well within a reasonable range for an online

Figure 6: Impact of tariffs in the EV user’s utility value.

Figure 7: Average running times of our online scheduler for differ-
ent number active EVs participating in the auction.

algorithm that controls EV charging, providing evidence that our
dynamic programming approach is effective.

6 CONCLUSION AND FUTUREWORK
In this work we developed an efficient online auction mechanism to
charge electric vehicles using a soft deadline-based user satisfaction
technique and under the presence of demand response and time-of-
use signals. We leverage existing online algorithms from the cloud
computing domain and use an effective dynamic programming
approach to obtain feasible charging schedules that maximize social
welfare for the charging facility and EV users. We evaluate our
algorithm using an open source data-driven simulator that emulates
existing EV charging facilities and uses over 23k real traces of
charging sessions. In our simulations, to consider further dynamics,
we implement vehicle-to-vehicle capabilities and solar generation
in the facility running our online algorithm.

Our algorithm outperforms all the baseline algorithms we con-
sidered in every scenario, showing significant reductions of up to
13% in the operating cost of the charging facility. Our algorithm
also computes schedules in a tractable time (less than 1 second
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for multiple EVs) and shows consistency under the variation of
electricity tariffs for truthful auctions.

Given the increasing penetration of EVs, further exploration
of this implementation can enable the creation of global optimal
charging algorithms that aim to reduce carbon emissions and en-
courages the integration with renewable energy sources. As future
work, we plan to extend our analysis to datasets from different
domains such as residential and public transportation systems and
with distributed systems that might have additional components
to improve overall social welfare. We also plan to deploy our algo-
rithm in a real setting and evaluate its impact on maximizing social
welfare.
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