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ABSTRACT
The tracking of electricity infrastructure locations is crucial to
making informed decisions on grid expansion and energy supply al-
ternatives. However, in developing settings, these tasks are limited
by technical and budget capacity constraints where the most recent
data on the locations of low- and medium-voltage grids is outdated
or even unknown. Currently, utilities in high-income economies
monitor these lines using sophisticated sensing devices, airborne
laser scanning, and field surveys which are unaffordable in emerg-
ing economies. In this work we aim to improve upon an existing
open-source electricity mapping tool that uses night-time light
data as the main proxy of electrification. Using ground-truth data
from Kenya, we validate the performance of the existing tool and
proposed a learning model to improve the detection of electrified
sites. Our results show that our learning model is able to correctly
identify ≈78% of those places which had electricity but were not
identified before and improve the detection accuracy by up to ≈7%.
Moreover, we show that using daily composites of nighttime data
combined with other open-source data sources significantly helps
the generation of accurate electricity access maps.

CCS CONCEPTS
• Computing methodologies → Supervised learning by clas-
sification; • Information systems → Data analytics;
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1 INTRODUCTION
Accurately tracking the state of electricity access is a crucial capabil-
ity to assess progress and prioritize investments towards universal
electrification [14]. Throughout the years, high-income economies
have collected such information using sophisticated techniques
such as airborne laser scanning [32], field and unmanned aerial
system surveys [20, 21, 25], and conventional simulation methods
to decide when and how to extend the grid. However, in emerg-
ing economies, these traditional methods are expensive and even
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unfeasible to implement since information about low- and medium-
voltage power infrastructure is outdated or difficult to access [27].

Fortunately, the growing availability of open-source data and the
ubiquity of remote sensing techniques are shifting the paradigm
of how electricity planning and monitoring is accomplished. For
example, the World Resources Institute has released the Global
Power Plant Database [23] containing data on approximately 30k
geo-located power plants across 164 countries with information on
fuel type, capacity, and generation. OpenStreetMaps (OSM) [12]
provides crowd-sourced ground-truth data about multiple features
such as roads, power infrastructure, buildings, forests, rivers, and so
on. This data availability is not limited to energy infrastructure but
also includes population density [31], natural resources data such
as wind speed [24], photovoltaic power potential [30], and land
cover [3], all of which combined with energy-related data may offer
significant insights into how tomeet the United Nations Sustainable
Development Goal (SDG) 7: to ensure access to affordable, reliable,
sustainable and modern energy for all.

The single most-employed proxy for estimating electrification
is night-time light data (NTL), collected by satellites over the en-
tire Earth and made available on an open-source basis [11]. The
particular strengths of this dataset are its global coverage, frequent
collection (daily), consistency of measurement across administra-
tive borders, and long historical record (the VIIRS satellite has
reported data since 2012, and its predecessor DMSP-OLS satellite
has reported data since 1992). However, the data exhibit substantial
noise, tend to overrepresent streetlights, suffer from stray light
effects, can be difficult to distinguish from lunar illuminance, and
are powerless in the face of clouds. Further, deep rural areas, even
when electricity access is present, may not register any signature
because of extremely low levels of external lighting; still, despite
these shortcomings, this valuable dataset remains the best available
for assessing electricity access broadly.

Recently, a promising technique emerged for the challenge of
locating existing power infrastructure. gridfinder takes a compos-
ite approach – using monthly and annual NTL data in concert with
other widely available infrastructure, land cover, and population
data – to produce an estimate of the world’s electricity grids [4].
Even though this framework offers an impressive accuracy of 75%
across a validation set of 14 countries and 88% specifically for Kenya,
the presence of low and noisy NTL data in rural areas prevents
gridfinder from identifying some settings as electrified. Improv-
ing on this performance requires new approaches and detailed
ground-truth data for validation.

In this work, we aim to validate the estimations from gridfinder,
specifically in Kenya where we have substantial ground-truth data
containing more than 57k geo-located transformers provided by the
local utility company. We perform a detailed analysis of locations
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where gridfinder fails to predict the presence of power infrastruc-
ture and propose a learning model to improve the estimations of
electrified sites using daily NTL data, which is beyond the temporal
resolution generally used elsewhere. Improvements on areas where
gridfinder performs poorly can especially enhance the prospects
of accurate, global-scale energy access tracking.

2 RELATEDWORK
Remote sensing data are valuable for a number of applications in
low-income countries, where other data sources tend to be absent.
Among these are crop yield prediction [26] and measuring road
quality [6]. An interesting application that has raised interest is the
use of NTL satellite data and machine learning to predict poverty.
In [18], the authors state that NTL data are a rough proxy for
economic wealth. A deep learning model was implemented using
a multi-step transfer learning approach due to the lack of ground
truth. The model is used to estimate either average household
expenditures or average household wealth at a cluster of geographic
aggregation. To estimate these outcomes, their transfer learning
pipeline involves three main steps. Using a pre-trained CNN on
ImageNet, the model learns how to identify low-level features such
as edges and corners. Then, the model is fine-tuned to predict the
NTL intensity corresponding to input daytime satellite imagery.
Finally using survey data along with the features extracted, the
authors train a ridge regression model that estimates cluster-level
expenditures and assets. These models can explain up to 75% of
the variations in local-level economic outcomes, emphasizing the
heterogeneity captured in NTL data.

There are numerous examples employing remote sensing data
for enhancing energy systems measurement, primarily in high-
income countries. These include detection of solar PV arrays and
power plants [5, 9, 16, 19]. Another application aims to estimate
generation capacity using weather forecasting and solar irradiation
data [28]. For low-income regions specifically, there is work aiming
tomeasure electric power stability using NTL data [10]. The authors
show evidence that long-term assessment of power supply growth
and stability can be accomplished looking at indices such as the
mean, variance, and lift of NTL irradiance.

In terms of electricity mapping we found that the World Bank
Group and Development Seed built a pipeline to map high-voltage
(HV) lines at country-scale[29]. Firstly, their model finds HV towers
in satellite imagery using XCeption Neural Network [8]. The model
was pretrained on ImageNet and generated a probability score on
the interval [0,1] that a high-voltage (HV) tower was present. For
training data, they used the Digital Globe Vivid layer which is
a privately-owned high-resolution imagery repository. Then, the
results were compiled and provided as a map overlay on top of
satellite imagery. However, this technique still relies on manual
tagging since professional mappers perform manual tracing from
tower to tower to identify sections of HV power lines. While the
end result does accurately trace out power networks, the limited
scope to HV lines limits the value of this approach.

Tackling a similar problem, in [22] the authors propose a crowd-
sourced framework to map electricity infrastructure using mobile
devices and an algorithm that aims to collect open imagery data
and the geographical location of grid infrastructure. However, this

approach is bounded by the willingness of the crowd to participate
and the availability of smartphone devices, both of which may be
lacking in rural areas with recent electricity access.

The most robust approach found so far is gridfinder [4]. Their
approach beginswith a custom image filtering process of themonthly
NTL satellite imagery to identify regions with consistent illumina-
tion (electrification targets). Then, assuming that all these regions
are grid-connected, they are used as proxy for the existence of grid
electricity. The implementation is based on a modified version of Di-
jkstra’s shortest path algorithm [13] seeking to make connections of
night lights in a specific region the most efficient way possible. The
algorithm infers grid paths based on the likelihood to follow roads
and avoid water. The ability for this system to estimate medium-
voltage (MV) lines makes it the state-of-the-art for electricity grid
estimation and, therefore, electricity access tracking.

3 DATA AND METHODOLOGY
3.1 NTL and ground-truth data
To explore and validate the performance of gridfinder, we con-
duct an analysis using the following datasets:

NTLandpopulation counts.We leverage theNTL data recorded
by the Day/Night Band of Visible Infrared Imaging Radiometer Suite
(VIIRS) on the NPP-Suomi satellite. This is captured by VIIRS on a
daily basis at a spatial resolution of 750 meters. These data are then
processed and converted into an NTL grid of 15 arc-seconds (ap-
proximately 450 meters at the equator) which is publicly available
in the form of daily, monthly, and annual composites [1]. Daily NL
data has been made available for open access by the World Bank
under the Light Every Night dataset [2]. For this study, we use
the NTL grid of Kenya, which contains daily radiance profiles for
every pixel in Kenya’s NL grid from April 2012 to the present day.
Radiance of pixels is given in units of 𝑛𝑊 /𝑠𝑟/𝑐𝑚2. We computed
the population counts per NL-grid pixel by aggregating the 2018
population count reported by WorldPop inside those pixels [31].

Transformer locations and minigrids of Kenya. We use
data of distribution transformers and minigrids in Kenya. The trans-
former dataset contains geo-locations of more than 57k transform-
ers, information about the date of commissioning (from 1966 to
2017), county name, and capacity (in kVA). Since we are interested
in identifying the presence of access, we only make use of geo-
locations and the date of commissioning because we need to match
with the temporal dimension of the daily NTL. In terms of min-
igrids, we use the town location of the existing 21 minigrids in
Kenya [17]. This dataset also contains commissioning date, number
of connections (June 2016), and installed capacity (kW).

3.2 Methodology
Data Preprocessing. To evaluate the performance of gridfinder,
wemerge the three different data sources that comprise our data. Ac-
cording to gridfinder, 97% of the world’s population lives within
10km of an MV line [4]; because of this, we create a generous buffer
of 5 km around gridfinder predictions and intersect this buffer
with transformer locations buffered by 600 meters. We choose 600
meters since it is the radius in which the utility charges customers
a flat fee to connect in Kenya. All the transformer locations that
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Figure 1: Comparison between different statistics of NTL data performed on examples classified as False Negatives (FN), True Positives (TP),
and True Negatives (TN) from gridfinder and validated with ground-truth data. Each index is calculated using daily and annual NTL. We
expect to see large radiance metrics in the FN group due to the presence of power infrastructure; however, the variations between FN and TN
are not significant, which may explain why gridfinder fails to estimate the presence of electricity infrastructure in those regions.

Class Group Num. examples Class Prop.
Electricity
Access (1)

TP 48,011 75.9%
FN 608

No Access (0) TN 15,431 24.1%
Table 1: Summary of number of examples per class and group ob-
tained from NTL and transformer data.

overlap with gridfinder are labeled as True Positives (TP); other-
wise, they are classified as False Negatives (FN). The goal of this
paper will be to identify FN examples that could have been correctly
identified as sites with electricity access.

The NTL data are composed of a spatial resolution of 15 arc-
seconds (≈ 450𝑚). By the time of writing this paper, the daily
composites available for Kenya covers ≈ 9.46% of the country so
we need to match the location of each transformer classified in
the previous step to the closest NTL cell available that covers the
transformer – within the spatial resolution of the NTL – based on
Haversine distance. The goal is to be able to map the transformer
location to the most accurate NTL radiance at that specific point.
To do so, we use 𝑘-nearest neighbor with 𝑘 = 1 and filter out NTL
data examples that have distances above the spatial resolution. NTL
locations that do not intersect either with gridfinder prediction
or the transformer locations are classified as True Negative (TN)
examples. Table 1 summarizes the ground-truth dataset with the
number of examples for each category.

We also performed some summary statistics within each group
and look at different indices such as kurtosis, skew, and variance
index between the daily and annual data. Kurtosis indicates how
peaked a distribution is. Higher kurtosis represents that radiance is
relatively stable and the distribution has shorter tails. Lower the
kurtosis means the distribution of radiance for a pixel is flat and
there is an equal chance of a pixel exhibiting high and low radiance
(more fluctuations). A positive or negative skew value indicates
that a pixelś radiance distribution is right- or left-tailed, i.e., a pixel
experiences radiance in the lower or higher end of the brightness
spectrum, respectively. Figure 1 illustrates a comparison between
each index within each group and daily and annual radiance values.
Mean and variance are higher for TP examples than for FN and
TN. Also, across these indices, the difference between FN and TN is
minor and varies slightly between daily and annual data which is
likely the reason why gridfinder fails to estimate grid presence
for the FN group. Kurtosis is higher for TN and FN which can be
seen as less stable radiance levels in comparison to the TN group.

By looking at the radiance distributions among the groups it is
difficult to observe substantial differences between TN and FN ex-
amples. However, there are minor differences that might be detected
by ML-based models and help to reduce the FN rate.

ML-Based models. To assess the aforementioned observation,
we define the problem as a binary classification task in which places
without and with electricity access are labeled as [0,1] respectively.
We build a dataset with daily and annual radiance indices, summary
statistics, and population counts as predictors. We use traditional
supervised learning classifiers such as decision trees, random for-
est, gradient boosting, support vector machine, and artificial neural
networks (Multilayer Perceptron classifier). Since our data are im-
balanced, we make sure that we stratify our datasets so train and
test sets have proportionally the same number of examples for each
class. Also, we separate the FN examples for testing since we aim
to evaluate the reduction of the misclassification in this group.

Feature Selection. It is possible to reduce the complexity of
a learning method if we perform feature selection on our set of
predictors. Even though the curse of dimensionality is not an issue
in this problem due to the number of examples in our dataset, this
technique is useful to identify important predictors and their in-
fluence on performance. Tree-based models such as random forest
and gradient boosting perform internal feature selection as part of
the procedure so they are immune to the inclusion of many irrel-
evant predictor variables [15]. Table 2 shows the top 10 rankings
of predictors for three different feature selection methods: feature
importance applied to random forest, gradient boosting, and statis-
tical filtering. We highlight predictors that are common for all three
techniques and ranked within the top 5: Population count, daily
mean, and 95th percentile NL values, all of which seem reasonable
to be relevant to identify places with electricity access.

Hyperparameter optimization.Weuse exhaustive search over
a discrete grid of values and evaluate the performance using 5-fold
cross-validation. We tune the hyperparameters using different score
metrics and refit the model using the best-found hyperparameters
on the whole dataset for four different score metrics: Accuracy,
Precision, Recall, and F1 score.

4 EVALUATION
We evaluate the performance of different models and the impact
of daily and aggregated NTL data that is being used as predictors.
We use the following metrics: Accuracy quantifies the number of
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Figure 2: Performance metrics for the learning models. Each figure shows the performance for models tuned to maximize the different score
functions. The legend indicates the performance metrics in the test set and recall FN point out the recall obtained only in the hold-out FN set.

Rank Random Forest Gradient Boosting Statistical Filtering
1 Population Population Daily 95th percentile
2 Daily Mean Daily Mean Annual Skew
3 Annual Mean Daily 95th percentile Daily Mean
4 Daily Dispersion Index Annual Variance Annual Mean
5 Daily 95th percentile Dispersion Index Population
6 Daily Variance Daily Kurtosis Annual Kurtosis
7 Annual Variance Annual Skew Daily Kurtosis
8 Annual Skew Annual Mean Annual Kurtosis
9 Daily Kurtosis Annual Kurtosis Annual Variance
10 Daily Skew Daily Skew Daily Variance

Table 2: Top 10 predictors for different feature selection techniques.
Common predictors within the top 5 are highlighted.

examples that are correctly classified. Precision is defined as the
ratio𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) and looks at the impact of FP. Recall is the ratio
𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ) which is commonly used to evaluate models that
associate a high cost to FN. F1 score is a function of precision and
recall and it is important when we want to observe balance between
those two metrics.

Performance of different learning models optimized for
different classification metrics.We tune the parameters of each
of our models using an exhaustive search over a discrete set of
hyperparameters for each model. Using 5-fold cross-validation we
can measure how well a given model generalizes. Furthermore,
it is possible to optimize the selection of these hyperparameters
that maximize the score of a specific metric. Figure 2 illustrates the
performance of each model tuned for different scores. Since our
dataset is imbalanced, the true performance improvement of our
model needs to be compared to the zero rule benchmark or major
class classifier [7]. For tree-based models we observe increments
in accuracy from 4 to 7%. On the other hand, support vector (SVC)
and multilayer perceptron (MLP) classifiers are extremely good at
reducing the FN rate (high recall) but increase the number of false
positives affecting precision and accuracy.

Tree-based models are usually more consistent than SVC and
MLP classifiers, which show high variability when they are forced
to optimize for recall and F1-score. For our problem domain, we
aim to reduce the number of FN examples which is reflected in
the recall and F1-score. However, our gradient boosting approach
shows significant improvement in comparison to the zero rule for
the test set and the recall FN. Recall FN is the recall obtained if we
estimate electrifications only in the places that gridfinder did not
recognized as electrified (FN examples). As we can observe in figure
2 and table 3, our model identifies ≈78% of those places which had
electricity but gridfinder did not identify.

Metric Daily Annual Only
Accuracy 0.955 0.934
Precision 0.965 0.947
Recall 0.976 0.964
F1-score 0.970 0.956
Recall FN 0.781 0.731

Table 3: Impact of daily NTL in electricity access estimation using
gradient boosting. Features obtained from daily NTL indices were
removed in the annual model. Removing predictors from daily data
reduces the performance of the model by on average ≈ 2% for the
test set and ≈ 5% for the FN set obtained from gridfinder.

Performance using daily vs annual predictors. Even though
the variations illustrated in figure 1 are minor, our learning models
can still detect interactions that improve the classification perfor-
mance. In Figure 2 we observe that the most consistent model across
the optimization metrics was gradient boosting which generally has
good recall performance. In order to measure the impact of daily
data for our model, we retrain our gradient boosting model using
only predictors from annual data and compare its performance
with the model that includes daily predictors. Note that the original
gridfinder implementation does not use daily NTL data.

Figure 3 summarizes the result of using predictors from daily
versus only annual data. Daily data improves overall performance,
by 2% on average for precision, recall, accuracy, and F1-score in the
test set. We pay special attention to the performance for recall in the
FN set since our goal is to improve the detection where gridfinder
is failing in terms of reducing the number of false negatives. We
can identify 78.1% of those cases and using daily features improve
5% of the recall obtained only with annual data.

5 CONCLUSION AND FUTUREWORK
Improving data on power infrastructure in developing settings is
essential to reach the goal of universal electrification, increase effi-
ciency in grid expansion investments, and mitigate the impact of
climate change. In this work, we evaluate the performance of the
existing state-of-the-art electricity access mapping technique using
nighttime lights radiance data and evaluate the estimations with
ground-truth data from Kenya. Using more granular composites
of NTL data, we show that we can improve the detection accuracy
by up to 7% and identify ≈ 78% of electrified sites that were pre-
viously missed. Furthermore, even though daily nighttime lights
data contains significant noise, the combination of such data with
additional publicly-available datasets can provide better means of
measuring electrification in developing countries.
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