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ABSTRACT
Access to electricity is crucial for poverty reduction and economic
growth. However, almost 759 million people still do not have access
to electricity. More than 90% are located in the global South, where
low-income countries struggle to provide clean, reliable, and afford-
able energy sources to ameliorate the basic living standards. Even
though there are many opportunities to provide basic electrification
in these settings, the lack of reliable and updated information about
electrification has become one of the main challenges for policy-
makers and developers to better plan grid extensions and prioritize
communities with higher needs. The increasing availability of re-
mote sensing data has created opportunities to obtain information
about electricity access at a larger and quicker scale. Using ground
truth data of 57𝑘 distribution transformer locations from Kenya, we
present a processing pipeline to validate and compare state-of-the-
art techniques that use very high resolution (VHR) daytime imagery
(50𝑐𝑚 Digital Globe) or low-resolution nightlight (NTL) imagery
(450𝑚 VIIRS-DNB) to identify electricity access. Further, we propose
a supervised-learning approach called PowerScour that outper-
forms three techniques from the commercial, scientific and public
fields. By assessing the trade-offs between temporal and spatial
resolution and comparing population and settlement patterns, we
find that PowerScour improves the F1-score of existing techniques
by up to ≈27% in deep rural areas. In Kenya, our model correctly
identified ≈73.4% of places with and without access to electricity
between 2013 and 2017. All data processing and modeling scripts
are available at https://github.com/santiagocorrea/PowerScour.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification.
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1 INTRODUCTION
According to the United Nation’s Sustainable Development Goal
7 (SDG7), providing universal access to affordable, reliable, and
sustainable electricity is the cornerstone to addressing major chal-
lenges in sustainable and social development and reducing poverty
in developing countries. Today, approximately 759 million people
lack access to electricity. In Sub-Saharan Africa alone, 570 million
people still lack access, accounting for three-quarters of people
without electricity [20]. Moreover, the Covid-19 crisis has exacer-
bated the problem by delaying or preventing many electrification
projects. Particularly in poorly electrified countries, the lack of
access stems from weak regulatory frameworks and insufficient
electrification plans [1]. Achieving SDG7 by 2030 requires signifi-
cant efforts to track progress in this field. It is a crucial challenge to
enable policymakers, national and international organizations, and
commercial entities to facilitate the adoption of renewable tech-
nologies, expand and upgrade existing infrastructure, and prioritize
resources to regions with higher needs.

Traditionally, electricity access information is compiled from
national/regional household surveys/censuses. These methods are
expensive and inefficient for frequent data collection from zones
with difficult terrains and remote areas, which limits the spatio-
temporal resolution of surveys/census and ultimately hinders the
assessment of progress on electrification. To overcome these issues,
researchers are leveraging the growing corpus of remote sensing
data by developing side-channel measurement techniques such as
Unmanned Aerial Vehicles [26, 27, 31, 38], high-resolution daytime
satellite images, and night-time light satellite data. Remote sensing
data is facilitating electricity planning and hence supporting the
tracking of SDG7. For example, daytime satellite images are com-
monly used to detect the presence of solar panels using data-driven
models [4, 6, 21, 24]. Crowdsourcing mechanisms through smart-
phones and open data have been used to infer distribution grid
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Figure 1: Radiance profile over time for a single pixel in
Kenya from daily measurement of the VIIRS-DNB sensor.
The red curve is a monthly rolling average.

topologies [30]. However, crowdsourcing requires significant com-
puting power for extensive coverage and relies on locally-available
labeled training data which may be scarce in developing regions.

Night-time lights (NTL) data is a widely used open-source dataset
due to its global coverage, timely availability, and consistency [11].
It has been used as a proxy for multiple applications such as urban
areamapping [37], population and economic activity estimations[17],
well-being and conflict assessment [16, 23, 36], and disaster monitor-
ing [25, 32]. Furthermore, researchers have leveraged this capability
of detecting artificial lighting at night to study electrification and
grid reliability [10, 28, 32, 33]. Currently, the daily NTL dataset pro-
vided by the Suomi NPP Visible Infrared Imaging Radiometer Suite
(VIIRS) is the most popular NTL dataset. Daily NTL measurements
are noisy as shown in Figure 1 and so the research community has
preferred using monthly/annual composites instead. However, in
this work we show that daily NTL can help detect electrification in
settlements with dim and irregular lighting levels.

In this study, we address these challenges using ground-truth
data from Kenya – a dataset of 57, 000+ geo-located transform-
ers provided by the local utility company. We develop a super-
vised learning model called PowerScour and evaluate its perfor-
mance relative to current state-of-the-art techniques for the task
of identifying electricity access. The compared systems include
gridfinder[2], gridlight, the High-Resolution Energy Access
dataset (HREA) [29] and the Gridded Dataset for Electrification in
Sub-Saharan Africa (GDESSA) [12]. We discuss the trade-offs be-
tween existing techniques and our model, and compare the de-
tection across time and in areas with a wide-range of population
dynamics. Validation results for the Kenya dataset show that the
model exceeds the performance of state-of-the-art techniques by up
to 27%. As an exploration of a potential future avenue for improve-
ment, we provide a performance comparison of a technique that
employs high-resolution daytime imagery for estimating electricity
access, and discuss the trade-offs of using low-resolution (NTL)
alongwith high-resolution daytime imagery. Through this work,
we aim to characterize the limits of measuring electrification using
remote sensing data to support universal electrification.

2 RELATEDWORK
In recent years, researchers and commercial entities have identified
several approaches to predict electricity access using remote sensing
data. In the followingwewill outline themost successful approaches
thus far.

Gridfinder and Gridlight: The most notable model thus far
has been gridfinder. Based on work by Rohrer at Facebook [15],
Arderne et. al. (2020) developed gridfinder, an open source tool
to predict the extent of the powergrid globally. Relying on NTL im-
agery and OpenStreetMap´s high-voltage grid and roads data, the
model is able to predict the global power grid with a reported accu-
racy of 75%. The technique usesmonthly NTL composites to identify
regions with consistent illumination. Gridfinder applies a 2D convo-
lutional filter to the temporally stacked NTL composites to extract
pixels that are brighter than their surroundings, enabling it to pick
up dimly lit areas. A threshold is then applied to obtain a binary
raster of electrification targets. Further, the areas with zero popula-
tion are filtered out from the electrification targets. Assuming that
all identified electrification targets are grid-connected, a medium-
voltage network is generated using Dijkstra’s shortest path algo-
rithm to connect all of the points [2]. Gridfinder has been applied
in various energy access planning projects, but has a crucial short-
coming in that it is a one-time estimation rather than a timeseries;
this limits its utility for tracking changes in electricity access. One
variation that addresses this shortcoming is produced by Village
Data Analytics (VIDA) which has developed gridlight, a modified
version of gridfinder that uses time-series NTL data. The targets
and medium-voltage grid estimates generated by gridlight serve
to identify unelectrified settlements (typically defined as being at
least 2.5-5km away from the grid). Gridlight has reported a bal-
anced average accuracy of 72% in three regions (Nassarawa (82%),
Ondo state (72%) in Nigeria, and Mozambique(61%)). Additionally,
gridlight uses a tunable threshold (0.1) during the convolution to
filter out noise background that can be adjusted to increase sensi-
tivity. A lower threshold increases accuracy by detecting dim lights
from small settlements, but increases the number of false positive
targets. Gridlight has been used in more than 14 countries, mainly
in Sub-Saharan Africa. The data is part of the VIDA analysis to
support investors and policymakers in developing national elec-
trification strategies and selecting mini-grid deployment sites. For
this work, we used gridlight electrification targets from 2014 to
2017 for Kenya, which are discussed in Section 4.

High Resolution Energy Access (HREA): Another approach is
the HREA method by Brian Min and Zachary O’Keeffe at the Uni-
versity of Michigan [29]. HREA uses daily NTL imagery to generate
likelihood estimates for electricity access over all populated areas
within a country. First, luminosity detected over areas without any
settlements trains a statistical model for background noise and ex-
ogenous factors, such as lunar illumination or land cover to yield an
estimate for baseline illumination for each day and land cover. Next,
the detected illumination is compared to the baseline illumination
on every pixel. Settlement pixels with significantly higher illumina-
tion than the baseline are assumed to have electricity access on that
night. By aggregating over all nights throughout a year, an artificial
light score is computed to determine the overall likelihood of an
area to be electrified. With this method, it is possible to identify
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Gridfinder HREA GDESSA

Source [2] [29] [12]

Processing
Steps

1. threshold 1. statistical modeling 1. noise correction
2. transient filter of background noise 2. urban & rural areas
3. cost modeling identification

Input Data

- monthly NTL - daily NTL - monthly NTL
- GHS population data - Facebook population - Landscan gridded population
- ESA Land Cover density maps - MODIS Land Cover
- NASA Elevation Model - GADM country boundaries
- OSM roads & electricity
- GHS settlement data

Output Data
- LV network (vector data) - likelihood estimates - access rates &
- MV network (vector data) for electrification - consumption tiers

(450m x 450m raster) (1km x 1km raster)

Characteristics - high precision - daily results - non-binary results
- distribution network - access quality

Table 1: Comparison of existing satellite-based technologies
to predict electricity access.

regions where electricity access is uncertain. In contrast to tradi-
tional binary classifiers, HREA provides an indicator regarding the
quality and reliability of power supply for regions with middling
scores [29]. The results of HREA are openly available and hosted by
the World Bank in the Light Every Night AWS Data Archive [3].

Gridded Dataset for Electrification in Sub-Saharan Africa
(GDESSA): A third approach to measure electricity access with re-
mote sensing data was presented by Falchetta et. al. of the Interna-
tional Institute for Applied Systems Analysis (IIASA). The GDESSA
model combines yearly NTL data, MODIS land cover classification,
and LandScan population data to estimate electricity access rates
and consumption levels in populated regions within Sub-Saharan
Africa. To identify electricity access, median radiance for each pixel
and each year is computed and compared to a lower-bound noise
floor, determined from by-definition zero-radiance pixels - for ex-
ample from large water bodies. Pixels above the noise floor are
considered electrified, pixels below are unelectrified. Further, each
pixel is classified as rural or urban based on land cover type and
population density. Non-zero radiance pixels are then assigned to
one of eight consumption tiers (four rural and four urban) according
to the World Bank Multi-Tier framework based on the distribution
of radiance quartile values [12].

Table 1 provides an overview of all three models and compares
them with regards to input, output, processing steps and distinct
characteristics. A detailed, quantitative validation of these models
against ground-truth data in Kenya is presented in Section 4.

3 METHODOLOGY
To investigate the limits of remote sensing data to measure elec-
tricity access, we developed a machine learning-based model called
PowerScour and compare its performance with current state-of-
the-art techniques. We aim to understand the trade-offs between
different spatial characteristics, performance over time, and oppor-
tunities that arise when other sources of remote sensing data are
used. In the following subsection we explain the datasets used and
the processing pipeline of our implementation.

3.1 Datasets
To explore the performance of existing NTL-based methods, we
use the following datasets as inputs for our framework:

Daily NTL data: The first initiative to collect low-light imagery
of the earth goes back to the mid-1960s with sensors onboard the
Defense Meteorological Satellite Program (DMSP) platforms [5].
Since then, two main products have been developed: the DMSP

Operational Linescan System (DMSP-OLS) and the Visible Infrared
Imaging Radiometer Suite (VIIRS) day/night band (DNB) on the
Suomi National Polar-orbiting Partnership (S-NPP) satellite mis-
sion. Data from the DMSP-OLS sensor were used to create annual
composites of stable light produced by different sources of human
activity such as agricultural fires, city lights, fishing boats, and gas
flares from 1994 to 2017. However, its large spatial resolution (30
arc-seconds or ≈1km at the equator), low radiometric resolution
(6-bit data, values range from 0-63), and saturation on urban cores
pose a significant challenge to analyze electrification at a usable
temporal and spatial granularity [7]. These challenges limit the abil-
ity to draw conclusions from time-series variations in low-density
urban areas since it may overlook small or dimly-lit areas.

Currently, the best available source of global NTL data is col-
lected by the VIIRS-DNB sensor [11]. The DNB data are collected
each day (during the night) with monthly and annual composites
also published from 2012 to the present-day. These data provide
radiance from surface lighting in 𝑛𝑊 /𝑐𝑚2/𝑠𝑟 units with a spatial
resolution of 15 arc-seconds (≈450 meters at the equator). This sen-
sor overcomes the limitations of the OLS sensor and are typically
used as cloud-free composites on a monthly basis. Recently, the
World Bank in collaboration with the National Oceanic and Atmo-
spheric Administration (NOAA) and the University of Michigan
released Light Every Night, a publicly-available data repository
of raw daily data collected from the two aforementioned sensors
over the last three decades [3]. Given the advantages of the DNB
data over the OLS sensor, in this work we use daily VIIRS-DNB
data and perform our analysis in Kenya, where we have significant
ground-truth data to validate existing techniques and evaluate our
proposedmethod. Daily NTL offers consistent measurements across
administrative borders and, in comparison to aggregated annual
and monthly, mitigates the under representation of NTL signals
in deep rural areas. However, it is extremely noisy, which requires
additional pre-processing steps before being used. We discuss these
shortcomings in Section 3.2.

Distribution transformers and minigrids in Kenya: Our
ground-truth data of electrification is composed of the geographic
location of distribution transformers and minigrids in Kenya. Trans-
former locations were provided from the national power utility. This
dataset includes latitude and longitude, date of commissioning, and
power capacity in 𝑘𝑉𝐴 units for more than 57𝑘 transformers. Dates
of commissioning span from 1966 to 2017, which facilitates the
analysis of electrification between 2014 and 2017 using NTL data.
We use this time period since it overlaps with the daily VIIRS-DNB
data that are used to train our model and validate the performance
of existing techniques.

Minigrid locations were obtained from a national report in [22].
It includes information from 21 minigrids such as installed capacity
(𝑘𝑊 ), number of connections by June 2016, and date of commis-
sioning. Unfortunately, this report does not contain geographic
coordinates so we use the geo-location of the settlement where the
minigrids belong to.

Population counts: Gridded population data provides a consis-
tent and comparable data format that is useful in scenarios where
the aggregation of population estimates is required for different spa-
tial or administrative units. This capability facilitates the analysis
and integration of diverse spatial datasets and enables evaluation



BuildSys ’22, November 9–10, 2022, Boston, MA, USA S. Correa, et al.

Figure 2: PowerScour: Data pipeline to estimate access to electricity using nighttime light data (NTL) and supervised learning
algorithms. The input data are raw daily NTL composites following a preprocessing step to clean and prepare the data to avoid
examples affected by cloud cover, stray light and lunar illumination effects. Ground-truth data was obtained from existing
locations of distribution transformers (TX). Summary statistics of each pixel constitute the feature space used for the binary
classification task. Hyperparameter tuning was implemented using k-fold cross-validation.

of the impact of population densities at a sub-national level. In this
work, we use gridded population estimates for two reasons: as a
feature for our electricity access estimation model, and as a mecha-
nism to filter out uninhabited regions where electricity access is
not needed, hence reducing the computational complexity of our
assessment. A widely used and publicly available source of gridded
population estimates is WorldPop [35], which provides population
counts from 2000 to 2020 at a resolution of 3 and 30 arc-seconds
(100m and 1km at the equator, respectively) globally. WorldPop
estimates population using a variety of models that leverage census
data and a stack of covariates.

3.2 Processing Framework
We propose a supervised learning model and designed a data pro-
cessing pipeline as illustrated in Figure 2. Our problem is defined
as a binary classification task where places that are electrified and
non-electrified are labeled as 1 and 0 respectively. We construct
these labels for training our model based on the presence or absence
of distribution transformers and minigrids within NTL pixels. Using
our ground truth in Kenya, If there is at least one transformer that
intersects with the area of an NTL pixel (450𝑥450𝑚), it is classified
as 1; if the pixel does not contain any electricity infrastructure, then
it is labeled as 0. Based on this problem definition, we estimate
electrification at an NTL pixel level so the input for our model is
a feature vector built on summary statistics of the radiance and
the population in each pixel, and the output indicates if that area
(450𝑥450𝑚) is electrified.

Given our problem definition, we complete the following steps
according to our data processing pipeline in figure 2.

Clean Data: Raw NTL data is noisy as we have shown in figure
1 and it cannot be directly employed in our approach. As opposed to
monthly and annual composites, daily data suffers from background
noise, solar and lunar contamination, data degradation due to stray
light, cloud cover, and events unrelated to electric lighting [10].

Background noise refers to the residual radiance in areas where
surface lighting is extremely low and are part of areas without
settlements such as water bodies and dense forests. Solar and lunar

illumination affects NTL data when their lighting reflects on Earth’s
surface so measurements taken when the sun is well in the horizon
(solar zenith > 101◦) and outside the full moon phase are preferred.
The DNB sensor provides solar zenith angles for each pixel which
facilitates the filtering of the desired signals. Stray light degradation
occurs when the sensor is collecting data from the Earth’s surface
while is hit by sunlight as the sun is under the horizon. Cloud cover
impacts the radiance of lighting by obscuring and scattering the
measurements and events such as wildfires, biomass burning and
gas flares add noise to electricity-based lighting [9].

The Light Every Night dataset provides quality bitflags that
indicate if some of the aforementioned issues were corrected in
each pixel. For example, cloud cover index varies between 1–5,
where 1 indicates very cloudy and 5 cloudless. For our analysis we
only use the pixels with 𝑖𝑛𝑑𝑒𝑥 > 4. In [8], the authors present the
detailed steps and algorithms necessary to produce clean and global
VIIRS NTL, which were incorporated in our dataset.

In addition to these corrections, we filtered out all the unin-
habited regions where estimating electrification would be futile.
Filtering out those regions as a preprocessing step reduces the com-
putational complexity for building our training set and accelerates
the inference time. We select inhabited regions in Kenya using the
WorldPop dataset presented in Section 3.1. For each NTL pixel,
we compute the population count by aggregating the WorldPop
geospatial raster dataset based on the vector geometry of each pixel.
Note that the aggregation is required since the spatial resolution
provided in the WorldPop dataset is 100𝑚.

Feature Engineering:An important advantage of working with
full-resolution temporal profiles is the opportunity to work with
additional indices besides the mean [10]. After filtering and merg-
ing with population data, we leverage the variable nature of daily
profiles by creating feature vectors using 4 statistical moments and
a score of the daily profiles: mean, variance, skew, kurtosis and
95𝑡ℎ percentile. Kurtosis provides information about the presence
of outlier and the tail heaviness of a distribution. High kurtosis
indicates that the radiance is more stable since the values are more
concentrated in the central peak of the probability distribution. Low
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Figure 3: ROC curve for different learning algorithms. XG-
Boosting shows slightly better performance than random
forest and multi-layer perceptron classifiers.

kurtosis indicates more fluctuation within the grid cell since the
distribution have heavy tails and the pixels can exhibit low and high
radiance levels at different nights. Skew measures the asymmetry
from the mean of the data distribution. Positive skew shows that
most of radiance levels are in the lower end of the brightness spec-
trum so the mean value is larger than the median, and a negative
skew indicates the opposite. These indices are obtained for each
NTL pixel which are the examples in the training and held-out sets.
These statistical characterization of daily data captures changes in
brightness from different types of human settlements and mitigate
the impact of noisy examples, which allow PowerScour to identify
places that are likely to be electrified.

Training and Held-out Sets: Our dataset is composed of more
than 225𝑘 examples that represent NTL grid cells excluding un-
inhabited areas. We split our dataset into training (70%) and test
(30%) sets, and use 5-fold cross-validation on the training set to
simulate a validation set and perform hyperparameter tuning as
we illustrate in algorithm 1.

Algorithm 1 5-Fold Cross-validation for Hyperparameter Tuning
Require: Dataset 𝐷 , Model𝑀 with set of hyperparameters 𝐻

Randomly split D into a training set 𝑇𝑟 and test set 𝑇𝑒
Randomly split 𝑇𝑟 into a set of 5 folds 𝐹1, ..., 𝐹5
for Each cross-validation fold 𝑘 = 1, ..., 5 do

Let 𝑉 = 𝐹𝑘 and 𝐿 = 𝑇𝑟 − 𝐹𝑘
Learn𝑀𝑖𝑘 on 𝐿 for choice of 𝐻𝑖

Computer performance metric 𝑃𝑖𝑘 on 𝑉
end for
Select 𝐻∗ 𝑠 .𝑡 . max 1

5
∑5
𝑘=1 𝑃𝑖𝑘 on 𝑉

Evaluate performance of𝑀∗ on 𝑇𝑒

Hyperparameter Tuning: Hyperparameters are a key com-
ponent during the model training process since they control bias-
variance and precision-recall tradeoffs, and in some cases, the speed
of training. These hyperparameters are not optimized or “learnt”
by the classifier during training but given as part of the algorithm
setup. Each supervised learning algorithm has a unique set of hy-
perparameters that are usually tuned using different techniques

such as grid search, random search, or coarse-to-fine search (a
combination of grid and random search). In this work, we use grid
search in combination with 5-fold cross-validation as described in
algorithm 1. Table 2 presents the commonly used hyperparameters
for each learning technique and their respective optimal value. Ran-
dom Grid search is the simplest technique that is used when the
set of hyperparameters is relatively small. Next, we explain how
we selected which traditional learning algorithm to use.

Learning Algorithm Selection: For our supervised binary clas-
sification task, we aim to find a method that given a set of example
pairs𝐷 = {(𝑥𝑖 , 𝑦𝑖 ), 𝑖 = 1 : 𝑁 } where 𝑥𝑖 ∈ R𝐷 is a feature vector and
𝑦𝑖 ∈ Y is a binary class label, is able to learn a function 𝑓 : R𝐷 → Y
that accurately predicts the class label 𝑦 for any feature vector 𝑥 .
There is a wide variety of learning classifiers each with different
properties such as interpretability, training and prediction speed,
decision boundary, and so on. We short-listed traditional classifiers
based on different principles such as kernel-based (Support Vector
Classifier (SVC)), shallow learning (Decision Trees (DT), and Ran-
dom Forest (RF)), deep learning (Multi-layer Perceptron Classifier
(MLP)) and ensembles (XGradient Boosting (XGB)). Table 2 sum-
marizes the main characteristics of each learning algorithm. SVC
is particularly robust when different classes are linearly separable
(decision boundary is linear); however, sparse feature vectors can
significantly degrade its performance.

Recently, interpretability has become a key component in ML
to verify predictions, identify flaws and biases, learn about the
problem and ensure compliance to legislation. Tree-based methods
offer an abstraction of feature importance that provide a global
interpretation of the model behavior which make them very use-
ful to comply with the aforementioned characteristics. Moreover,
these types of algorithms are generally fast during the training
and inference steps, which make them attractive for production
environments that handle real-time predictions. But, ensemble al-
gorithms are known to provide more predictive power for complex
tasks. Artificial Neural Networks (ANNs) are widely used due to
their great predictive power and ability to represent non-linear re-
lations between the target and the input examples. However, ANNs
tend to overfit when trained using limited (small) data and their
interpretability is considerably more challenging.

After training and tuning each type of learning algorithm we as-
sess the performance of each classifier using the receiver operating
characteristic (ROC) curve. The output of our binary classifica-
tion task belongs to one of four classes: true positive (TP), places
that were predicted electrified are actually electrified; true neg-
ative (TN), an example is correctly predicted as non-electrified;
false positive (FP), a pixel is predicted as electrified but is actually
non-electrified; and false negative (FN), a pixel that is incorrectly
predicted as non-electrified. ROC curves combine true positive
rate (TPR) and false positive rate (FPR) of the classifiers which are
defined as 𝑇𝑃/𝑇𝑃 + 𝐹𝑁 and 𝐹𝑃/𝐹𝑃 + 𝑇𝑁 respectively. Learning
models with higher area under the ROC curve (AUC) are typically
better classifiers. A perfect model has an AUC of 1 and if a classifier
obtains an AUC below 0.5, it means that the model is not better
than a random classifier. Figure 3 illustrates the performance of
five traditional learning models. The Decision Trees classifier per-
forms poorly with an AUC of only 0.6. In contrast, MLP, random
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Model Principle Properties Hyperparameters AUC

SVC
kernel-based ↓ capacity for large feature vectors kernel type (RBF) 0.68

↓ interpretability C (1), gamma (10)
↓ train and prediction speed

DT
shallow learning ↑ interpretability criterion (entropy) 0.60

↑ train and prediction speed max. depth (3), max. features
↓ predictive power

RF
ensemble ↑ capacity for large feature vectors num. estimators (100) 0.76

↑ train and prediction speed max. depth (3), max. features (4)
↓ interpretability

XGB
ensemble ↑ capacity for large feature vectors num. estimators (1000) 0.77

↑ train and prediction speed max. depth (10), subsample (0.7)
↓ interpretability learning rate (0.01)

MLP
deep learning ↑ capacity for large feature vectors num. hidden layers (3) 0.76

↓ train and prediction speed optimizer(Adam)
↓ interpretability learning rate (0.001)

Table 2: Comparing principles, properties, hyperparameters,
and AUC for conventional supervised learning methods.

forest and XGBoost show the best performance with an AUC of
0.76-0.77. Since XGB classifier shows the best AUC, we choose it as
the learning algorithm to conduct our study.

4 EVALUATION
In this section, we present a performance analysis of existing tech-
niques and PowerScour based on three different conditions: detec-
tion of electrified sites over time, performance based on different
population densities and settlement patterns, and comparison of
detection using very high resolution satellite imagery. As it was
presented in Section 2, HREA, GDESSAA, and gridlight do not ex-
plicitly provide their estimations as a binary class format nor use
the same spatial resolution. We transformed these approaches to
enable a fair comparison between all of them. For each method, we
aimed to obtain an electrification estimate for each NTL grid cell
that overlaps with inhabited regions as explained in Section 3.2.

Even though the HREA dataset uses NTL pixels for the estimation,
the outcome of their model has a higher spatial resolution linked to
a settlement layer (≈ 30𝑚) and the outcome is given as a likelihood
electrified estimate. To match our binary measurements of access,
we apply a threshold of 0.5 to each HREA cell. Pixels with a likelihood
greater than the threshold are classified as electrified (1), otherwise
they are classified as unelectrified (0). The output of this step is a
binary raster file that is used to match the spatial resolution of the
VIIRS data. For each NTL pixel, we compute the number of HREA
pixels that are located within each NTL cell. If there is at least one
HREA electrified pixel in the NTL polygon, then the NTL pixel is set
to have electricity access.

Gridlight and GDESSA provide a binary access layer as an inter-
mediate step. Gridlight exposes rasters of electrification targets
that refer to places with consistent illumination. Similarly, GDESSA
first computes the electrified areas and then adds a population
layer to estimate the number of people electrified at different tier
levels. We query these binary rasters to obtain their value at the
centroid location of each NTL cell. Given that both use NTL data
with consistent spatial resolution, no further processing is required.

To evaluate the performance of existing techniques, we use
the following standard metrics to assess the performance of the
binary classifier: accuracy ((𝑇𝑃 + 𝑇𝑁 )/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 )),
precision(𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)), recall (𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 )) and F1-score (2 ·
𝑇𝑃/(2 ·𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 )). Accuracy represents the ratio between the
correctly classified and total number of classified examples. It is
commonly used when the errors in each class are equally important.

However, this metric is susceptible to class imbalance and has to be
used with care. Precision is the ratio of correct electrified predic-
tions to the total number of examples estimated as electrified. Recall,
also known as true positive rate, quantifies the ratio of correct elec-
trified predictions to the overall number of electrified examples
in the dataset. F1-score is the harmonic mean between precision
and recall. It decreases with an increase of false positives or false
negatives examples. This metric provides better interpretability and
a balance between precision and recall. Each of these metrics above
gain value based on the prediction goal and ultimate use. If the goal
is effectively detecting locations for electrification, then the model
needs to reduce the number of false negatives. If it is assigning
electricity grid auditors, one needs to avoid false positives.

4.1 Performance over time
One important feature of remote sensing techniques is the ability
to measure changes over time. For the application of tracking the
progress of electricity access, this is especially valuable as it allows
continuous performance monitoring of investments and the reallo-
cation of resources as necessary. Remote sensing data can also serve
as an independent "check" on stakeholders who may be politically
incentivized to over-report or under-report electrification. All the
techniques presented in this study provide annual electrification
estimates that can be linked to our ground-truth data from 2013
to 2017, except for GDESSA which is available from 2014 onward.
For each year, we built a ground-truth dataset as explained in Sec-
tion 3.2 using the commissioning date for the transformers and
minigrid dataset in Kenya. For our learning model, we train only
with examples from 2017 (70% for training and 30% as a held-out set
for testing in the year) and evaluate with the examples in previous
years. Since each year has independent NTL features and popula-
tion densities, data leakage is prevented and the class proportions
are maintained using stratified sampling.

Table 3 summarizes the performance of each approach across dif-
ferent years and illustrates the class proportion for each year which
shows the electrification increase year by year in this NTL sample.
Across the years of analysis, gridlight outperforms all remaining
techniques in terms of precision; however, it performs poorly for
recall. As we discussed in Section 2, gridlight finds electrified
areas based on their consistent illumination. Since only monthly
composites are used in this technique, places with high variability
or dim light such as small settlements or villages are mostly unde-
tected as electrified. High precision indicates that the number of
false positives is very low. It means that gridlight is very certain
when a place is identified as electrified, specifically in the case of
large settlements of cities, but classifies as non-electrified places
that are actually electrified due to the aforementioned shortcoming.
This characteristic of being cautious about labelling settlements as
electrified and aiming for high precision is a key requirement for
gridlight when being used to support policymakers. Similarly,
GDESSA shows a low recall and a competitively high precision. It
applies additional land cover layers that facilitate the identification
of settlements regardless of their size. However, this technique uses
yearly composites of NTL which may underestimate places with
radiance close to the noise floor, which could be the reason why
the recall is low as in gridlight.
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2013 2014 2015 2016 2017
Metric GL HREA GDESSA PS GL HREA GDESSA PS GL HREA GDESSA PS GL HREA GDESSA PS GL HREA GDESSA PS
Accuracy 0.566 0.704 n.a. 0.647 0.605 0.693 0.543 0.659 0.530 0.676 0.555 0.663 0.497 0.683 0.496 0.681 0.632 0.695 0.624 0.735
Precision 0.970 0.865 n.a. 0.620 0.970 0.867 0.889 0.647 0.974 0.872 0.879 0.658 0.974 0.870 0.897 0.740 0.973 0.854 0.858 0.748
Recall 0.268 0.515 n.a. 0.840 0.231 0.520 0.190 0.830 0.210 0.517 0.270 0.869 0.220 0.585 0.227 0.761 0.354 0.626 0.486 0.876
F1-score 0.321 0.645 n.a. 0.714 0.374 0.650 0.313 0.727 0.346 0.649 0.413 0.749 0.359 0.699 0.362 0.751 0.519 0.722 0.621 0.807
Class prop. elect.(52.3%), non-elect.(47.8%) elect.(55%), non-elect.(45%) elect.(58%), non-elect.(42%) elect.(63%), non-elect.(37%) elect.(63%), non-elect.(37%)

Table 3: Comparison of performance over time for existing NTL-based techniques. Best performance across different techniques
is highlighted in bold. gridlight shows better precision results for all the years. PowerScour(PS) outperforms gridlight(GL)
and HREA in recall and F1-score.

Both HREA and PowerScour consistently show the best balanced
performance among the techniques. HREA generally shows signifi-
cantly better accuracy than gridlight and GDESSA, and marginally
better than PowerScour approach except in 2017 where our learning
algorithm outperforms HREA by ≈ 4%. For recall, however, Pow-
erScour notably reduces the number of false-negative examples
across all the years and shows an increase of ≈ 35% in compar-
ison to HREA in 2015. The recall is an important metric since we
are mainly interested in reducing the number of false negatives; in
other words, we primarily aim to find unelectrified places with high
confidence due to its importance for measuring and reaching uni-
versal access to electricity. On the other hand, PowerScour shows
low precision in comparison to the other approach indicating that
our model is not as confident detecting true electrified places as
the other models are. However, the precision is not substantially
low to indicate degradation in the model performance. Moreover,
F1-score, which provides a balance between precision and recall,
is measurably higher for our model for each year of the analysis.
This represents an improvement on the state-of-the-art techniques
available for this problem, enabling better tracking of electricity
access over time.

4.2 Population and Settlement Pattern
Another dimension of our analysis is observing performance based
on population densities and settlement characteristics which can
affect the ability of sensors to detect nighttime light signals. More-
over, settlement categories such as rural, peri-urban, and urban
areas can implicitly demonstrate the challenges to identify access
to electrification in a given region using NTL-based methods.

We obtained the settlement classification frompreviouswork [13]
which employs population density, land use classification, and NTL
data to compute clusters of the aforementioned categories in a
raster format. We merge this classification with our NTL grid cells
adding an attribute of urban class. Then we subdivide each settle-
ment category into thirds (Q1, Q2, Q3) based on population counts
of each NTL pixel and observe the performance. In this setting, the
dominant settlement class is rural which accounts for ≈ 96% of
the total NTL grid cells. Urban and peri-urban areas represent the
remaining ≈ 4% which refers to major cities and settlements in the
country. Figure 4 illustrates the F1-score for each model at different
population and urban organization. We observe improvements in
performance for all the techniques as we move from rural places
with low population densities in Q1 to highly populated urban
areas. Also, most of the techniques show an F1-score close to one
when transitioning from rural to peri-urban, with the exception of
gridlightwhich reaches its maximum score at the urban category.
On the other hand, the lowest population third in rural areas shows

the lowest performance across all the models with less than 60% in
F1-score. This behavior clearly demonstrates the limitations to un-
derstand electricity access in places with lower population density
using NTL data. Rural areas with little or scarce street lighting do
not emit enough light to be easily detectable by the existing mod-
els. However, it is worth noting that HREA and our model, which
are the only two methods that use daily measurements of NTL,
significantly outperform gridlight and GDESSA in this category.
Moreover, our model shows better performance than HREA across
the different population characteristics, likely as a result of our
statistically-informed feature engineering approach.

Figure 4: Comparing performance across different areas and
levels of population density. Each type of area is subdivided
into thirds (Q1,Q2,Q3) based on population count. Population
increases from left to right.

However, the aforementioned settlement categories are not uni-
form when we evaluate different settings. A typical scenario that
highlights the shortcomings is: assuming a rural settlement pat-
tern of households largely dependent on agriculture, where each
household may have a regular grid farm evenly spread out over an
administrative area. This type of settlement needs long wires with
multiple electric infrastructures in order to electrify the whole area
through grid extension. However, another settlement pattern with
the same number of households located in a nucleated settlement
surrounded by farmland may need much less wires and a fraction of
infrastructure. Both settlements have the same overall population
density measured at the administrative area scale, and might both
be classified as rural administratively.

Define the former kind of settlement pattern as non-nucleated
rural and the latter as nucleated rural. Even if both settlements
have full access to electricity by grid extensions, the latter pattern
will most certainly have a distribution infrastructure located within
the tight settlement area. Moreover, from the NTL perspective, the
nucleated rural is more likely to be visible, as opposed to the more
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diffuse non-nucleated rural. These different settlement patterns
would become one of the reasons that the model performs worse
in the vast and diverse rural areas. This highlights the importance
of considering the settlement pattern as an additional metric in the
validation of the model.

In previous work [14], the authors developed a settlement pat-
tern metric used to better estimate the power infrastructure for
distribution system planning. Given the building structure locations
in Kenya, this model outputs the deployment strategy of medium
and low voltage lines and transformers to reach electrification for
each ward in Kenya with the least infrastructure costs. Because a
single transformer has a maximum length limit to connect struc-
tures, more structures connected to a transformer means a higher
nucleation level. In other words, every hypothetical transformer
represents a cluster of structures with different settlement patterns.

We apply the hypothetical transformer as a metric of settlement
pattern, by merging to each NTL grid cell according to the location,
and investigate if this metric impacts our learning model perfor-
mance. For each transformer that intersects with an NTL pixel, we
average its number of structures per transformer (str/TX) as a new
feature, so that each NTL not only contains summary statistics
across daily NTL measurements but also a new predictor that rep-
resents the settlement pattern. We re-train our model taking into
account the new attribute and only evaluated in areas classified as
rural. We illustrate the confusion matrices of the two models (with
and without str/TX) in Figure 5. Not every NTL pixel intersects
with hypothetical transformer locations, so the feature is set to
zero for those particular cases. We can observe that including the
settlement pattern indicator slightly improves the accuracy of the
model reducing the number of false positive examples (top right
corner). The reason might be that the new feature helps the model
recognize that sparse rural wards are prone to lacking access. How-
ever, the improvement is marginal and computing the new attribute
is computationally intensive, which likely renders it superfluous.

Figure 5: Confusionmatrices for rural areaswhen the average
number of structures per hypothetical transformer (str/TX)
is added as a feature in our learning model.

4.3 Low Versus High Resolution Satellite Data
Even though NTL data has been widely used to identify economic
activity and electricity access due to its global coverage and tem-
poral resolution, recent advancements in imaging technology and

remote sensing have made it possible to also acquire daytime im-
ages at high resolution (30-50𝑐𝑚) which facilitates the analysis of
infrastructure development at a higher granularity. Unfortunately,
these images are often only available from commercial providers at
significant expense and with infrequent temporal frequency, par-
ticularly in rural developing regions. In this section, we aim to
evaluate if the use of high resolution visible (red, green, and blue
bands) imagery would improve the electrification measurements
relative to the low resolution of NTL data (450m). This analysis can
give an indication of how much room for improvement there can
be in accurately estimating electricity access.

For this study, we compare the performance of PowerScour
model trained using NTL data with a CNN model trained on Dig-
italGlobe’s (DG) high resolution daytime satellite images [18] in
Kenya, for the task of detecting electrification. This DG dataset
consists of approximately 7000 images of size 10𝑘𝑚 × 10𝑘𝑚, with
each image having a spatial resolution of 50𝑐𝑚. For ease of training
a CNN, large DG images were divided into smaller image tiles of
size 250 × 250𝑚 (or 500 × 500 pixels). Even though these images
were captured ranges from 2010 to 2017, it is important to note
that each region of Kenya was only captured once and therefore
the daytime image tiles do not have a temporal component since
they do not overlap. Similarly as in our NTL data preprocessing
step, image tiles were labelled as “electrified” or “non-electrified”
based on presence or absence of electrified structures in each image
tile during the corresponding year of capture. the geo-location of
electrified structures across Kenya was recorded as a part of the
Kenya National Electrification Strategy (KNES) [19].

The entire dataset was grouped using a standard 70-20-10 split
for training, validation and testing, ensuring similar distributions of
buildings per image. Splitting was done such that model would get
evaluated on images from different counties and with varied electri-
fied structure densities. Furthermore, we created an additional test
dataset called our comparison test set. We manually appended the
comparison test set with all the daytime image tiles whose centroids
belonged to the held-out NTL images. All the image tiles added
to the comparison test set were removed from training, validation,
and testing sets to ensure there was no leakage of information. The
comparison test dataset was completely hidden from the model dur-
ing training and evaluation process. This new test set was created
to allow for consistent performance comparison of the two models
– the NTL-based PowerScour model and the daytime image-based
CNN – in the same held-out regions of Kenya.

A VGG11 CNN model [34] pre-trained on the ImageNet dataset
was used for the task of classifying daytime image tiles into electri-
fied or not electrified. The VGG11 network was modified to handle
image tiles of size 500× 500𝑝𝑥 and to output binary results. The en-
tire network was trained end-to-end using a batch size of 16 images,
learning rate of 1e-6 and training time equal to 50 epochs. After
training and evaluation of the CNN model, we made the model
predict electrification status of each image tile in the comparison
test dataset. Since multiple daytime image tiles in the comparison
set belong to one larger held-out NTL image, we labelled the held-
out NTL image as “electrified” if at least one corresponding image
tile was predicted as “electrified”. Finally, for each held-out NTL
image, we also obtained labels predicted using a CNN trained on
high resolution daytime satellite images.



PowerScour: Tracking Electrified Settlements Using Satellite Data BuildSys ’22, November 9–10, 2022, Boston, MA, USA

2014 2015 2016 2017
Metric High Low High Low High Low High Low
Accuracy 0.849 0.816 0.675 0.705 0.624 0.678 0.693 0.709
Precision 0.691 0.642 0.664 0.735 0.608 0.692 0.711 0.770
Recall 0.898 0.882 0.885 0.767 0.917 0.765 0.873 0.8
F1-score 0.781 0.743 0.759 0.751 0.731 0.726 0.784 0.785
Table 4: Comparing performance over time for PowerScour
with 450𝑚 resolution NTL data (Low) and a CNN using 50𝑐𝑚
resolution RGB imagery (High).

Table 4 summarizes the comparison between the CNN-based
model and PowerScour approach across the 2014-2017 timespan. For
the test set in 2014 we can observe that the high resolution tool out-
performs the NTL-based approach; however, as we move towards
more recent years the differences become increasingly marginal
and in 2017 we see a better performance of the NTL model across
most of the metrics but recall. The NTL-based model shows better
accuracy and precision in three of the four years of our analysis
with an average difference in performance of ≈ 0.3% and ≈ 6% re-
spectively. In contrast, the CNN-model outperforms the NTL model
for recall during the same years. The balance between precision
and recall can be observed in the F1-score which has an absolute
difference of only ≈ 0.4% between the two models. Even though
the CNN-based model is able to provide higher granularity, the per-
formance difference with the NTL-based model is marginal which
may indicate that we are hitting an upper bound in performance to
detect access to electricity using the current remote sensing tools.
Thankfully, this strong performance can be achieved with a free,
globally-available, and frequently-collected dataset, rather than an
expensive and infrequently-updated dataset, positioning the NTL-
based PowerScour method as a strong candidate for continuous
tracking of electricity access.

5 DISCUSSION AND FUTUREWORK
We have shown the dynamics of electricity access detection across
time, population, settlement patterns, and types of remote sensing
data. Traditionally, measuring access to electricity in high-income
economies is unnecessary due to universal electricity access. By
contrast, emerging economies are dynamic, requiring additional
data sources such as NTL data that are also changing and correlate
with human activity. However, detection of electrified settlements
in developing regions using the current state-of-the-art techniques
still struggles to track electrification in deep rural areas as we have
observed in Figures 4. Even though we have provided an analysis
that combines spatial dynamics from two different perspectives
(population and settlement patterns), we consistently observe that
sparse rural areas are the most difficult to identify electrification.

Besides the inherent difficulty detecting low night light from
DNB sensors, one possible reason why some techniques underper-
form in these settings is the underlying NTL data source used. For
example, gridlight and GDESSA use monthly and annual compos-
ites which are heavily aggregated and filtered, discarding possible
insights in the variability of the signals as illustrated in Figure 1.
By contrast, we have seen that HREA and our PowerScour learning
model, which use daily nightlight measurements, improve over the
aforementioned techniques in rural areas by at least ≈ 20%. This

difference in performance highlights the additional information
present in the noisy daily data and how the results for gridlight
and GDESSA could be improved if daily NTL data were incorporated
to control their respective filtering processes.

We have also explored the performance of using high-resolution
daytime satellite imagery versus our NTL-based PowerScour model.
As shown in Table 4, the improvement in performance in detecting
electricity access from high-cost, high-resolution images is mar-
ginal, indicating that our NTL-based technique may be approaching
a regime of diminishing returns. Nonetheless, daytime images of
50𝑐𝑚 resolution can potentially identify more characteristics of
the environment and critical infrastructures such as transmission
towers, power plants, and solar PV arrays. This type of imagery
also offers the possibility to assess household conditions such as
roof type and size, distance to primary roads, and more, which can
be correlated to access to electricity. However, this type of approach
requires more computing power, and it is more difficult to scale
globally since few satellite imagery providers offer affordable global
coverage. These shortcomings are reflected in the high cost of com-
puting infrastructure and data acquisition, posing a challenge for
developing countries and policymakers with budget constraints.

As more substantial ground-truth data become available in de-
veloping settings, we plan to investigate the implications for trans-
ferability of our learning model and what volume and distribution
of local data are needed to train a generalizable model. For this
study, we concentrate our analysis in Kenya where we have access
to detailed ground truth. However, to deploy this model widely, it
is required to analyze the levels of domain shift across regions to
assess what data are needed to effectively fine-tune PowerScour.

Furthermore, we have seen that our model can do better than
current state-of-the-art NTL-based techniques; however, we be-
lieve that adding more sources of publicly-available data such as
geographic information about land cover, roads, and building foot-
prints should be further investigated. These additional datasets can
potentially be predictors of electrification and are extremely useful
in rural areas where NTL data alone are not sufficient.

6 CONCLUSION
Tracking access to electricity in developing regions is an essential
step in the quest to achieve universal access to clean, affordable,
and reliable electricity for all. Fortunately, technological advances
in remote sensing and side-channel techniques and the ubiquity
of open-source data have enabled the development of data-driven
tools to monitor progress towards achieving universal access more
frequently and at a fraction of the cost of traditional census.

In this study, we analyzed three of the most prominent tech-
niques to detect access to electricity using NTL data and proposed
a learning model called PowerScour that leverages daily NTL data.
Using substantial ground truth from the national utility company
in Kenya, we compare the performance of each approach across
time, population, and settlement patterns. As expected, we found
that identifying electricity access from NTL data in rural areas with
scarce population densities poses a difficult task due to the low
levels of brightness that characterize these settings. However, we
observe that techniques using more granular daily NTL data are
able to improve the detection over those which only use monthly
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and annual composites by at least ≈ 20%. Moreover, our Power-
Scour learning model outperforms the existing methods, especially
in areas with low population density.

Further, we also find that the performance of our PowerScour ap-
proach compares favorably with that of a CNNwith high-resolution
daytime satellite imagery, an approach that employs expensive im-
agery and substantially more compute-intensive processing. This
indicates that estimating electricity access using remote sensing
techniques with only low-resolution data, may have limited im-
provement potential. We are keen to contribute our technique to-
wards the governments, investors, and other organizations striving
for universal electricity access.
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