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Abstract—Urban-scale building energy modeling (UBEM)
holds promise for optimizing energy usage across extensive
geographic regions. However, there is a recognized bias between
simulated energy consumption and actual measured data. This
study, based on building data from Chicago, delved into bias
correction techniques for enhancing the accuracy of UBEM
energy consumption estimates. Initially, the AutoBEM simulation
yielded a normalized mean bias error (NMBE) of 1.1% and 51%
of Coefficient of the Variation of the Root Mean Square Error
(CVRMSE) after outlier exclusion. To address this, three bias
correction methods were deployed: Average Mean Bias Error
based bias correction, Quantile mapping bias correction, and
Machine learning-based bias correction using Linear Regression
and Random Forest models. Post-correction results exhibited
marked improvement. The NMBE values were diminished to
0 for Average MBE-based, 0.36 for Quantile Mapping, and
0 for Machine Learning-based corrections. Concurrently, the
CVRMSE values registered reductions from an original 51 to
50.8 for Quantile Mapping, and 38.56 for Machine Learning-
based corrections, pointing towards the effectiveness of specific
bias correction methods in refining the precision of UBEM
energy predictions. Such accurate estimations are paramount for
informed energy planning and urban policy-making.

Index Terms—Urban-scale building e nergy modeling, Bias
Correction, Machine Learning, Random Forest, Quantile Map-
ping

I. INTRODUCTION

Urban Building Energy Modelling (UBEM) plays a crucial
role in shaping energy conservation strategies, designing ur-
ban neighborhoods, integrating buildings with the grid, and
determining building-level carbon reduction strategies [1]-[3].
UBEM facilitates impact estimations for energy conservation
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measures, thus empowering decision-makers to devise and
implement sustainable strategies. However, the accurate rep-
resentation of building attributes, including function, location,
age, usage patterns, and others, is critical for building effective
energy models [4].

Traditional physics-based models rely on detailed simula-
tions to create high-resolution energy profiles but are compu-
tationally expensive for city-scale applications. On the other
hand, data-driven models estimate building-level energy usage
using general building characteristics but are less efficient at
evaluating the impacts of energy conservation measures [4].
Recent advancements in UBEM involve the use of public
building data, Geographic Information System (GIS) data,
and remote sensing data to create building-specific models or
representative archetypes for a specified region [5]. However,
despite the technological advances, there remains an urgent
need to correct biases to further improve energy predictions.

This study uses the Automatic Building Energy Modeling
(AutoBEM) [6] suite with the Model America version 2.0
(MAv2) dataset to generate and simulate energy models.
AutoBEM utilizes OpenStudio [7] to generate building energy
models and EnergyPlus [8] to simulate the models. AutoBEM
has been developed and validated using diverse data sources
and was compared to the measured data for 178,368 buildings
in Chattanooga, Tennessee [9], [10]. However, there exists a
gap in empirical validation of UBEM, especially in terms of
bias correction, still warrants further exploration [11].

AutoBEM and MAvV2 have undergone validation at mul-
tiple locations with data from the Electric Power Board of



Chattanooga, Tennessee, and aggregated building utility data
from five different cities, among others [12], [13]. Also,
specific data fields from MAv1, an earlier version of the Model
America dataset, have been validated against city-specific data,
such as building heights in Las Vegas [14]. These studies
identified potential sources of error, leading to improvements
in estimating height and function of buildings in MAv2.

Chen et al. (2017) stress the significance of ensuring
accuracy in UBEM, noting that even minor deviations in
attributes like building type or age can substantially skew
predicted energy consumptions [4]. This precision becomes
even more imperative when one considers the dichotomy
between the granular depth of physics-based models and the
scalable breadth of data-driven methodologies.

Data, particularly when sourced from Geographic Informa-
tion Systems (GIS), is another potential pitfall. Reinhart and
Cerezo Davila (2016) elucidate that while GIS offers rich
geographical datasets, the translation of such data into energy
metrics often introduces biases [15]. Temporal resolutions,
especially in regions with diverse climates, can be another
major source of variance in UBEM, as outlined by Amasyali
et al. (2018) [16].

Machine learning, with its adaptive and heuristic nature,
has been a transformative element in the bias correction field.
Its efficacy has been evident across different sectors, such
as wind power forecasts and real-time energy consumption
predictions [17]. For instance, Wang et al. (2016) highlighted
the benefits of deep learning techniques in real-time energy
predictions, emphasizing its capabilities in discerning and
rectifying nuanced biases [18].

The introduction of machine learning in UBEM, while
promising, comes with its own set of challenges. As high-
lighted by Hong et al. (2016), the predictive capabilities of ma-
chine learning can be undermined if the foundational datasets
are not robust and representative [19] [20]. Furthermore,
Ascione et al. (2016) warn that without the right granularity
in integrating weather data, UBEM can grossly misestimate
energy consumption [21]. That is why refining computational
predictions through bias correction has emerged as a pivotal
component in energy modeling.

Notably, quantile mapping, a statistical downscaling
method, has garnered substantial attention, particularly in
climate modeling [22]. It has been employed to correct biases
in climate model outputs by comparing the distribution of sim-
ulated values to observed data. Themefl et al. (2011) affirmed
the robustness of quantile mapping in ensuring that future
climate projections adhere closely to historical observations,
making it a widely adopted method in climate studies [23].

These bias correction techniques have been applied across
different disciplines. Quantile mapping has been a technique
used to bias correct weather forcasts [24]. Machine learning
bias correction techniques have been applied to Aerosel Op-
tical Depth [25] and chemical transport [26]. The broad uses
of bias correction make urban building energy modeling an
interesting case study.

TABLE I: Column Descriptors for City-based Building
Archetypes

Column Name Description

Building Type
Vintage Year
Num_build_per_zone
Total_zone_area
Area_multiplier

Type of DOE prototype building

Year of construction vintage

Number of buildings in the climate zone
Total floor area in the climate zone
Total_zone_area divided by median area value

MedianArea Median floor area in the climate zone
MeanArea Mean floor area in the climate zone
MinArea Minimum floor area in the climate zone
MaxArea Maximum floor area in the climate zone
SDArea Standard deviation of floor area

In our study, we embrace a systematic approach by inves-
tigating three distinct bias correction methods. The general
goal of this paper is to evaluate these techniques’ efficacy in
urban building energy modeling (UBEM) using the AutoBEM
simulation data and measured tax accessor data for Chicago
city.

II. METHODOLOGY
A. AutoBEM Simulated Data

To simulate building energy consumption, the city-based
building archetypes are characterized by their building type
(function) and vintage, and they have been generated from
the Model America data. In addition to all the build-
ing features present in the MAv2t, each archetype dataset
includes the information provided in Table-I for specific
DOE prototype buildings and their corresponding vintage
years.[Cite:https://zenodo.org/record/5798155]

The Annual Energy Use Intensity (EUI) for each archetype
is calculated by dividing the Electricity consumption by the
area of the representative archetype. This EUI is then assigned
to all buildings in the city of the same type and vintage.
Finally, to estimate total energy consumption, we multiply
this EUI by the actual area of each building. Through the
simulation of diverse building archetypes spanning various
historical periods, and employing this methodology to compute
Energy Use Intensity (EUI), we have generated estimations for
the energy consumption of distinct buildings in Chicago.

B. Data Cleaning and Preprocessing

To ensure accurate analysis and comparison between the
simulated data and the ground truth metered data at the
individual building level, a rigorous data cleaning and pre-
processing workflow was implemented.

The process of matching the MAv2 data with the corre-
sponding ground truth metered data at the individual building
level was a crucial step in the analysis. The workflow involved
several steps to ensure alignment between the datasets and
eliminate unreliable data points. Buildings with null or zero
annual energy consumption in the ground truth data were
removed from the dataset to maintain the integrity of the
analysis and avoid potential biases.

In order to facilitate a more comprehensive classification of
buildings, granular building sub-types were determined based
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Fig. 1: Random Forest Regression Algorithm [27]

on land use description. These sub-types were then used to
create distinct building types within the dataset. The MAv2
buildings, representing the modeled data, were then matched
with the most suitable ground truth buildings based on multiple
factors, including geographic location, building total floor area,
building types, and year of construction.

During the spatial matching process, challenges arose due to
differences in geographic coordinates obtained from different
sources. To address this, additional factors such as building
total floor area, building types, and year of construction were
incorporated to enhance matching accuracy and establish a
reliable correspondence between the modeled and ground truth
data points.

Outliers, defined as buildings with extremely low annual
energy consumption, were identified using a threshold value
(Iess than 5150.1 kWh per year). To determine this threshold,
we considered the average energy consumption of a typical
U.S. household, which is approximately 11,000 kWh per
year. Removing these outliers from the dataset ensured that
their impact on the analysis was minimized, and the results
remained robust.

C. Bias Assessment

In the pursuit of achieving a holistic assessment of the
UBEM, we have anchored our evaluation on two primary
performance indicators: the Normalized Mean Bias Error
(NMBE) and the Coefficient of Variation of the Root Mean
Squared Error (CVRMSE).

NMBE provides a glimpse into the average discrepancy or
bias between the model-predicted energy consumption and the
real-world observed values. It’s calculated as:

S(E - A)
S A
Here, E represents the estimated energy consumption and
A stands for the actual or observed energy consumption.
An NMBE value gravitating towards zero is indicative of
model efficiency. Positive or negative outcomes highlight over-

predictions or under-predictions, respectively.

NMBE = x 100 (1)

CVRMSE gauges the spread or dispersion of the model’s
errors relative to the mean of observed values. It is derived
by:

RMSE

CVRMSE = =
A

Here, RM SE is the root of the average of squared differences
between the model’s predictions and the observed values, and
A is the mean of the observed values. Lower CVRMSE values
are indicative of tighter error distributions, which, in turn,
suggest a model that predicts more consistently in relation
to the actual observations. In essence, while NMBE identifies
systematic biases in predictions, CVRMSE provides a measure
of the consistency or reliability of those predictions in relation
to actual observations.

x 100 2)

D. Bias Correction

1) Average MBE-based Bias Correction: The Average
Mean Bias Error (MBE) is a simple bias correction method
that involves calculating the average bias for each building
type and applying the correction uniformly. The formula for
the Average MBE-based bias correction is as follows:

E.=FEs+ MBEa'Ug 3)

where:

o F. is the corrected energy consumption after bias correc-

tion.

o E, is the simulated energy consumption estimated by the

building energy model.

e MBE,,, is the average Mean Bias Error for the specific

building type.

2) Quantile Mapping Bias Correction: Quantile mapping
is a non-parametric bias correction method that involves
matching the quantiles of the simulated energy consumption
distribution to the quantiles of the ground truth distribution.
The formula for quantile mapping bias correction is given by:

E Fg;ound truth (Fsimulated (E9 ) ) (4)

where:

o E. is the corrected energy consumption after bias correc-
tion.

. Fg;olund wuth 18 the inverse cumulative Qistribution function
of the ground truth energy consumption.

o Fmulaed(Es) is the cumulative distribution function of

the simulated energy consumption.

The process can be systematically divided into four major
steps: filtering data for the specific building type under consid-
eration, calculating cumulative distribution functions for both
simulated and ground truth energy consumption, calculating
correction factors by taking the ratio of the percentiles of
ground truth consumption to the corresponding percentiles of
simulated consumption, and finally, computing the corrected
cumulative distribution functions after applying the quantile
mapping correction.



E. Machine Learning-based Bias Correction

In the machine learning-based bias correction, we employ
Linear Regression and Random Forest models to predict
and correct the biases based on building characteristics. We
selected Linear Regression as a representative of parametric
models, which assumes a specific functional form for the
relationship between variables. In contrast, we chose Random
Forest Regression for its non-parametric nature, allowing it
to capture complex, non-linear relationships without a prede-
termined form. The decision to utilize both models provides
a comprehensive approach, catering to potential linear and
non-linear patterns in the data. The formula for the machine
learning-based bias correction using Linear Regression is
given by:

E. = 60 + lel + 62552 +...+ ﬂnxn (5)
where:
o F. is the corrected energy consumption after bias correc-
tion.
e Bo,081,...,0, are the coefficients obtained from the

Linear Regression model.
e (1, x9, ..., x,) are the selected building characteristics
used as features for bias correction.

Similarly, the formula for the machine learning-based bias
correction using Random Forest is given by the ensemble of
decision trees, and the prediction is made based on the average
of the individual tree predictions (See figure 1).

The Random Forest Regression (RFR) is a powerful ma-
chine learning algorithm known for its ability to handle
complex relationships between variables and make accurate
predictions. For each building type in the dataset, the bias
correction process using the RFR involved several key steps.
First, the data was filtered to isolate the specific building type
under consideration. To ensure the robustness of the analysis,
building types with fewer than 1000 instances were excluded
to avoid insufficient data for accurate training.

Next, a set of relevant features, including floor area, building
height, Windows-Wall-Ratio, Number of floors, EUI from
UBEM, building type, and standard (age), were selected as
predictors, while the target variable was measured energy
consumption (ground truth), representing the total building
annual energy consumption.

To facilitate the machine learning process, categorical fea-
tures such as “Building Type” and “Standard” columns were
transformed into numerical data using one-hot encoding. The
dataset was then split into training and testing sets, with 70%
of the data used for training and 30% for testing.

The RFR model was trained on the training set, where
the algorithm learned to map the predictor variables to the
target variable. After training, the model was used to make
predictions on the testing set to assess its performance.

To evaluate the effectiveness of the RFR for bias correction,
key metrics such as Mean Squared Error (MSE) and R-squared
(R?) were calculated. The MSE quantifies the average squared
difference between the predicted and actual values, while the

R? provides an indication of how well the model captures the
variance in the target variable.

III. RESULTS AND DISCUSSION
A. Initial Results

We found that the aggregated NMBE for the modeled
building stock was 1.1% after removing outlier. In terms of
CVRMSE, we found that it was 51% after following the same
pre-processing step. This relatively high CVRMSE suggests
that while the model accurately estimates aggregated energy
consumption, there is considerable variability at the individual
building level.

Figure 5a and 5b presents the NMBE and CVRMSE
values across various building types and standard vintage
breakdowns. Notably, the breakdown related to construction
prior to 1980 encompasses a substantial number of single and
multi-family residential structures. The outcomes reveal that
AutoBEM achieves a higher level of precision in estimating
energy consumption for single-family buildings (NMBE of -
5.39%) compared to multi-family residential buildings (NMBE
of 23.5%). The negative NMBE in single-family buildings
suggests a slight underestimation by AutoBEM, while for
multi-family buildings, the model tends to overestimate con-
sumption, resulting in a larger absolute disparity in contrast to
single-family buildings.

When comparing the slopes of the regression lines in
Figure-3, it becomes evident that the R? values associated
with each building type are notably low. This indicates that
the predictor variables employed in the model explain only
a limited portion of the observed variations in electricity
consumption.

B. Bias Correction Results

The bias correction analysis was conducted with a focus on
building subtypes that were identified as contributing more to
the bias through ANOVA analysis. Before bias correction, the
original Normalized Mean Bias Error (NMBE) for Chicago
was 1.1, indicating a positive bias in the modeled energy
consumption as compared to the ground truth data. This sug-
gested that the energy consumption estimates were generally
overestimating the actual energy usage for the buildings in
Chicago.

After applying the bias correction methods, the NMBE
values were significantly reduced, indicating that the bias was
successfully corrected for all methods. The Average MBE-
based correction and Quantile Mapping correction reduced
the NMBE to 0, eliminating the positive bias observed in the
original results. The Machine Learning-based bias correction
using Linear Regression achieved the lowest NMBE of 0.41,
highlighting its effectiveness in accurately correcting bias.

Additionally, the original Coefficient of Variation of Root
Mean Squared Error (CVRMSE) for Chicago was 51%, rep-
resenting the variability in the energy consumption estimates.
After applying the bias correction methods, the CVRMSE
values were reduced.
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Fig. 2: NMBE and CVRMSE for building areas across different residential building types and vintages. Heatmap before and
after bias correction showing significant improvement for both NMBE and CVRMSE. Number inside NMBE and CVRMSE
showing the number of buildings for each category. After Bias correction, for the pre-1980 constructed buildings, the value of
NMBE drops down from -5.4% to 0% for Single Family House and 23.4% to 0% for Multi Family House.



SINGLE FAMILY RESIDENTIAL

MULTI FAMILY RESIDENTIAL

GENERAL RESIDENTIAL

500000

800000 . . 400000 .
y =041k + 20221.74 y = 0%0x + 28099.84 y =0.51x + 14688.67
700000 4 R2 =014 R2 =0.08 50000 | R2 =014
400000 .
§ eoooon g : 5 3000001
2 500000 ., Z 300000 7 250000 4
c c c
a =1 =) b
E 400000 : ';'-\ *
= 1 1
& 5 & 200000 . . -
g g 200000 g -
fim) frei fivy -
5 300000 4 = 7 150000
200000 100000 4
100000
100000 50000 -
1 ‘ T ‘ T ‘ T ‘ I 0= : T T T T
0 5000010000015000020000025000(B00000350000 0 500001000045000@0000Q50008000085000800000 20000 40000  6OOOO0  BOOOO 100000 120000

Estimated Energy Consumption

Estimated Energy Consumption

Estimated Energy Consumpticn

Fig. 3: Annual electricity consumption comparison among Multi-family, single-family residential, and General Residential
buildings. Each of the building type is showing very low R? value before bias correction.
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Fig. 4: R? value and correlation increased after bias correction for each of the building types. Significant improvement is
noticeable for Multi Family Residential (from 0.08 to 0.32) and for General Residential Buildings (from 0.14 to 0.56)

TABLE II: Bias Correction Results comparison from different techniques. It is evident that machine learning model performed

best in correcting bias.

Original ~ Avg-MBE-based Method  Quantile Mapping  Machine Learning
NMBE 1.1 0 0.36 0
CVRMSE 51 51 50.8 38.56

The Quantile Mapping method slightly reduced the
CVRMSE to 50.8%, indicating a moderate improvement in
the precision of energy consumption estimates. After applying
the quantile mapping, cdf follows the same trend for both
estimated and measured data (see figure- 5). The Machine
Learning-based approach achieved the lowest CVRMSE of
38.56%, indicating that it not only corrected bias effectively
but also improved the precision of energy consumption es-
timates, resulting in more accurate and consistent estimation.
Figure 2 is the heatmap illustrating how NMBE and CVRMSE
are improved for individual category.

The insights derived from the machine learning analysis
are noteworthy. When using Linear Regression, the model
achieved training and testing accuracies of 19% and 18%,

respectively, with an NMBE of 0.01 and a CVRMSE of
42.45%. On the other hand, the Random Forest algorithm
showcased training and testing accuracies of 35% and 12%,
respectively. This model returned an NMBE of 0.002 and
a CVRMSE of 38.56%. The stark difference between the
training and testing accuracies of the Random Forest model
signals potential overfitting. As a next step, addressing this
overfitting through hyperparameter tuning could be beneficial.
Additionally, exploring alternative algorithms might also be a
worthwhile endeavor.

IV. DISCUSSION

Despite employing multiple bias correction techniques, in-
cluding Average MBE-based correction, Quantile Mapping,
and various Machine Learning methods, the CVRMSE did not
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Fig. 5: After applying Bias Correction using Quantile Mapping, the Cumulative Distribution Function (CDF) of simulated data
follows a similar trend as the ground truth data for each of the building type

TABLE III: Comparison of two Machine Learning bias correction techniques reveals that while Random Forest was successful
in reducing the CVRMSE more significantly compared to Linear Regression, it exhibited signs of overfitting due to a huge

difference between training and testing accuracy.

Algorithm Training Accuracy (%)  Testing Accuracy (%) NMBE CVRMSE
Linear Regression 19 18 0.01 42.45
Random Forest 35 27 0.002 38.56

decrease to anticipated levels. This suggests a few possibilities.
First, the underlying energy consumption data may possess in-
herent variability that isn’t solely due to bias. External factors,
such as anomalous weather patterns, unforeseen building oc-
cupancy, or equipment malfunction, might contribute to these
deviations. Secondly, energy consumption is often influenced
by multiple interacting parameters. While techniques like
Quantile Mapping or linear regression attempt to tackle biases
in a predominantly linear manner, the actual interrelations
might be more convoluted, requiring more advanced correction
methods or model adjustments.

Currently, our analysis has focused solely on Chicago,
Illinois, USA as an initial case study to establish the foun-
dation of our primary methodology for investigating bias
conditions between the simulation results of MAv2 and the
measured energy consumption data. However, in the future
steps of our research, we intend to expand our study to
include multiple cities across different climate zones. By doing

so, we aim to develop a more comprehensive understanding
from the bias assessment process. This expansion will also
enable us to establish a robust approach for bias correction
in energy consumption analysis across various regions within
the United States, thus contributing to the development of a
general methodology for bias correction for building energy
simulations.

V. CONCLUSIONS

In this study, we addressed the critical issue of bias in urban-
scale building energy modeling (UBEM) and implemented
various bias correction methods to improve the accuracy of
estimated energy consumption. We applied three different
bias correction methods: Average MBE-based bias correction,
Quantile mapping bias correction, and Machine learning-based
bias correction using Linear Regression and Random Forest
algorithms. The results revealed that the bias correction meth-
ods effectively improved the energy consumption estimation



for Chicago city. The findings from this study emphasize
the importance of addressing bias in urban-scale building
energy modeling. By employing appropriate bias correction
techniques, we can significantly improve the accuracy of
energy consumption estimation, which is crucial for energy
planning and policy-making at the level of a city.

ACKNOWLEDGEMENTS

Notice of Copyright. This work was funded by field work
proposal CEBT105 under US Department of Energy Building
Technology Office Activity Number BT0305000, as well as
Office of Electricity Activity Number TE1103000. The authors
would like to thank Amir Roth for his support and review
of this project. This research used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-AC02-
06CH11357.

Oak Ridge National Laboratory is managed by UT-Battelle,
LLC, for the U.S. Department of Energy under contract DE-
AC05-000R22725. This manuscript has been authored by UT-
Battelle, LLC, under Contract Number DE-AC05-000R22725
with the U.S. Department of Energy (DOE). The U.S. gov-
ernment retains and the publisher, by accepting the article for
publication, acknowledges that the U.S. government retains,
a nonexclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript, or
allow others to do so, for U.S. government purposes. DOE will
provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

REFERENCES

[1] C. F Reinhart and C. Cerezo Davila, “Urban building energy
modeling - a review of a nascent field,” Building and
Environment, vol. 97, pp. 196-202, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360132315003248

[2] Y. Q. Ang, Z. M. Berzolla, and C. F. Reinhart, “From concept to
application: A review of use cases in urban building energy modeling,”
Applied Energy, vol. 279, pp. 237-250, 2020.

[3] ——, “From concept to application: A review of use cases in urban
building energy modeling,” vol. 279, p. 115738. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306261920312289

[4] Y. Chen, T. Hong, and M. A. Piette, “Automatic generation and simula-
tion of urban building energy models based on city datasets for city-scale
building retrofit analysis,” Applied Energy, vol. 205, pp. 323-335, 2017.

[5] Q. Li, S. J. Quan, G. Augenbroe, P. Yang, and J. Brown, “Building
energy modelling at urban scale: Integration of reduced order energy
model with geographical information,” 12 2015.

[6] J. R. New, M. B. Adams, P. Im, H. L. Yang, J. C. Hambrick, W. E.
Copeland, L. B. Bruce, and J. A. Ingraham, “Automatic building
energy model creation (AutoBEM) for urban-scale energy modeling
and assessment of value propositions for electric utilities,” Oak Ridge
National Laboratory, Oak Ridge, TN (United States), Tech. Rep., 2018.

[7] U.S. Department of Energy, “OpenStudio,” 2021,
https://www.openstudio.net/ (retr. 2021-09-03).

[8] D. B. Crawley, L. K. Lawrie, F. C. Winkelmann, W. F. Buhl, Y. J.
Huang, C. O. Pedersen, R. K. Strand, R. J. Liesen, D. E. Fisher, M. J.
Witte et al., “Energyplus: creating a new-generation building energy
simulation program,” Energy and buildings, vol. 33, no. 4, pp. 319-331,
2001.

[9] J.R. New, M. Adams, E. Garrison, H. Yang, O. Omitaomu, and A. Rose,
“Data sources and assumptions underlying virtual-epb analysis,” ORNL
internal report ORNL/TM-2018/841, pp. 1-23, 2018.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

J. New, M. Adams, A. Berres, B. Bass, and N. Clinton, ‘“Model
America — data and models of every U.S. building,” Apr. 2021,
Automatic Building Energy Modeling (AutoBEM). [Online]. Available:
https://doi.org/10.13139/ORNLNCCS/1774134

A. Oraiopoulos and B. Howard, “On the accuracy of urban
building energy modelling,” Renewable and Sustainable Energy
Reviews, vol. 158, p. 111976, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1364032121012405
B. Bass, J. R. New, N. Clinton, M. Adams, B. Copeland, and C. Amoo,
“How close are urban scale building simulations to measured data?
examining bias derived from building metadata in urban building energy
modeling,” Applied Energy, vol. 327, p. 1, 2022.

B. Bass, J. R. New, A. Berres, M. Adams, N. Clinton, M. Leung,
K. Tuxen-Bettman, and S. van Groenou, “Environmental insights ex-
plorer for buildings,” 9 2022.

J. R. New, B. Bass, M. Adams, and A. Berres, “Model america
- clark county (vegas) extract from ornl’s autobem (version 1.1)
[data set],” Zenodo, no. 1.1, Feb. 2021. [Online]. Available:
https://doi.org/10.5281/zenod0.4552901

C. F. Reinhart and C. C. Davila, “Urban building energy modeling—a
review of a nascent field,” Building and Environment, vol. 97, pp. 196—
202, 2016.

K. Amasyali and N. M. El-Gohary, “A review of data-driven building
energy consumption prediction studies,” Renewable and Sustainable
Energy Reviews, vol. 81, pp. 1192-1205, 2018.

X. Costoya, A. Rocha, and D. Carvalho, “Using bias-correction to
improve future projections of offshore wind energy resource: A case
study on the iberian peninsula,” Applied Energy, vol. 262, p. 114562,
2020.

Y. Wang, Q. Chen, T. Hong, and C. Kang, “Review of smart meter
data analytics: Applications, methodologies, and challenges,” IEEE
Transactions on Smart Grid, vol. 10, no. 3, pp. 3125-3148, 2018.

T. Hong, S. C. Taylor-Lange, S. D’Oca, D. Yan, and S. P. Corgnati,
“Advances in research and applications of energy-related occupant
behavior in buildings,” Energy and buildings, vol. 116, pp. 694-702,
2016.

S. Chowdhury and M. P. Schoen, “Research paper classification using
supervised machine learning techniques,” in 2020 Intermountain Engi-
neering, Technology and Computing (IETC). 1EEE, 2020, pp. 1-6.

F. Ascione, N. Bianco, R. F. De Masi, G. M. Mauro, and G. P. Vanoli,
“Design of the building envelope: A novel multi-objective approach
for the optimization of energy performance and thermal comfort,”
Sustainability, vol. 7, no. 8, pp. 10809-10836, 2015.

C. Piani, G. Weedon, M. Best, S. Gomes, P. Viterbo, S. Hagemann,
and J. Haerter, “Statistical bias correction of global simulated daily pre-
cipitation and temperature for the application of hydrological models,”
Journal of hydrology, vol. 395, no. 3-4, pp. 199-215, 2010.

M. Jakob ThemeBl, A. Gobiet, and A. Leuprecht, “Empirical-statistical
downscaling and error correction of daily precipitation from regional
climate models,” International Journal of Climatology, vol. 31, no. 10,
pp. 1530-1544, 2011.

K. Whan, J. Zscheischler, A. 1. Jordan, and J. F. Ziegel,
“Novel multivariate quantile mapping methods for ensemble
post-processing of medium-range forecasts,” Weather and Climate
Extremes, vol. 32, p. 100310, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2212094721000086
D. J. Lary, L. A. Remer, D. MacNeill, B. Roscoe, and S. Paradise,
“Machine learning and bias correction of modis aerosol optical depth,”
IEEE Geoscience and Remote Sensing Letters, vol. 6, no. 4, pp. 694—
698, 2009.

M. Xu, J. Jin, G. Wang, A. Segers, T. Deng, and
H. X. Lin, “Machine learning based bias correction for
numerical chemical transport models,” Atmospheric  Environ-
ment, vol. 248, p. 118022, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S135223102030755X
S. Chowdhury, Y. Lin, B. Liaw, and L. Kerby, “Evaluation of tree based
regression over multiple linear regression for non-normally distributed
data in battery performance,” in 2022 International Conference on
Intelligent Data Science Technologies and Applications (IDSTA). 1EEE,
2022, pp. 17-25.



