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ABSTRACT
The progress made in computer vision and satellite technology has
opened up new possibilities for observing societies and infrastruc-
ture. By analyzing vast amounts of high-resolution multi-temporal
satellite data, decision-makers can gain valuable insights into pop-
ulation shifts, economic trends, and infrastructure performance.
Nevertheless, challenges in this kind of imagery, such as varying
image quality, imbalances in data collection between urban and
rural areas, high costs, and the absence of image metadata, can
impede the efficacy of these methods.

In this work, we develop strategies for enhancing the perfor-
mance of learning methods for high-resolution multi-temporal
satellite imagery. We develop custom augmentation methods and
inference techniques for identifying disparate image resolutions
across historical imagery. We apply our generic techniques to the
problem of detecting structures in longitudinal imagery, exhibiting
modest but consistent performance improvements over baseline
techniques. We then develop a case study analyzing the relation-
ship between the expansion of electricity access and the growth in
human settlements over time. We discover that across 1000 com-
munities in Kenya over a decade, settings that received electricity
access grew 15% more slowly than settings that did not receive
electricity access. This non-intuitive and statistically robust finding
challenges conventional wisdom about infrastructure provision and
rural-urban migration, with potentially broad implications for as-
sessing the impacts of infrastructure investments on rural lives and
livelihoods. All data processing and modeling scripts are available
at https://github.com/santiagocorrea/DeepSatGSD.

CCS CONCEPTS
• Computing methodologies→ Computer vision.
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1 INTRODUCTION
Remote sensing has revolutionized how we measure, detect, and ob-
serve phenomena around the globe. It has become an indispensable
tool for scientists, researchers, and policymakers due to its non-
intrusive nature, extensive spatial coverage, and ability to collect
data over time. Today’s growing availability of hyperspectral and
high spatial resolution satellite imagery has opened the door for
applications across various domains such as economics, agriculture,
sociology, and public services that report weather conditions and
traffic patterns. Pairing this trend with increasing computing power
and recent advances in artificial intelligence and computer vision,
this source of information has uncovered innumerable previously
known patterns and insights into Earth and infrastructure systems.
The fast-growing compendium of historical satellite information
enables unprecedented multi-temporal (longitudinal) observations,
enabling examination of system changes over time, efficiently and
at large scale [57]. Today, deep learning techniques canmap low and
high-level image representations by learning filters that produce
responses to visual features (such as edges and colors), ultimately
enabling scene recognition [4].

Multi-temporal imagery has become especially relevant for ur-
ban planners and policymakers. By analyzing scene changes over
time, planners can better understand how human settlements are
growing and changing. This information can help with zoning, in-
frastructure planning, and natural risk assessment decisions. These
capabilities are particularly valuable in low-resource settings, where
historical ground data collection has typically been limited, new
data collection can be prohibitively expensive, and changes in popu-
lation and climate may be highly dynamic. Despite these challenges,
there have been numerous demonstrations using deep learning
methods with remote sensing data, including for land-use moni-
toring [26], electricity consumption predictions [19], and poverty
assessment [21, 54, 56].

https://github.com/santiagocorrea/DeepSatGSD
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However, coupling multi-temporal imagery with data-driven
methods remains challenging because longitudinal images often
have highly varying quality – with different feature resolutions and
color profiles over time (see Figure 1 for examples). This is because
sequences of satellite observations often come from multiple sen-
sors over time. These sequences can also have a variety of noise
sources, missing data, and gaps due to meteorological phenomena
(snow and clouds) during the acquisition or distortions during stor-
age and transmission [40]. Additionally, this problem of different
sensors is exacerbated by satellite data collection strategies. Typi-
cally, urban and rural areas will have substantially different revisit
frequencies – ranging from days and weeks in urban settings to
months and years in rural settings – with high-resolution imagery
data often collected in irregular intervals due to business reasons
of the commercial entities that operate the satellites. The resulting
imagery datasets are substantially imbalanced over time, requiring
significant care to learn from with good performance. This may
include curating training samples from different periods or even
developing individual models based on image age or resolution.

This work aims to alleviate some inherent challenges in employ-
ing machine learning methods on multi-temporal satellite imagery.
In particular, we develop a system for collecting publicly available
high-resolution satellite imagery from Google Earth Pro, construct
a pipeline for identifying a crucial metadata feature from those im-
ages – ground sample distance – and develop deep learning models
that leverage these metadata to improve performance specifically
for image segmentation tasks with multi-temporal data. In our
analysis, we leverage publicly available data – including satellite
imagery, census data, and building footprint data – and cutting-edge
computer vision techniques. To demonstrate the value of our ap-
proach, we implement a deep learning-based technique to monitor
changes in the rural built environment to conduct a national-scale
case study on the relationship between the expansion of electricity
access and growth in human settlements in developing regions,
ultimately uncovering a statistically-robust, policy-relevant, and
non-intuitive finding. Our key contributions to the literature are:

• A collection of strategies for enhancing segmentation-based
building footprint identifiers, particularly for multi-temporal
imagery. We expressly do not claim novelty for enhancing the
core and well-studied segmentation techniques used for building
footprint identification but demonstrate particular methods for
improving their performance with longitudinal imagery, includ-
ing developing distinct models for images at different resolutions
and employing custom data augmentation methods for multi-
temporal imagery to accommodate varying color profiles and
imbalanced training sets.

• A learning model to infer ground sample distance metadata from
satellite imagery. This model was motivated by the circumstance
arising from the freely available satellite imagery source that
we employ (Google Earth Pro), which does not provide meta-
data information about the acquisition sensor, and they can vary
between multi-temporal images of the same location. While cali-
bration objects can help estimate ground sample distance, their
presence is not always guaranteed, and their size can also vary.
However, a learning model can detect and calculate this feature
from pixels and estimate it at scale.

• An unexpected correlation between lack of electricity access and
faster growth in human settlements. While it is typically thought
that expansion of electricity services will attract rural migration,
our statistically significant findings across 1000 communities
throughout the country of Kenya over a decade show that settings
that received electricity access grew 15% slower than those that
did not receive electricity. This calls for further research and can
have implications for strategies for rural economic development
via infrastructure investments.

2 RELATEDWORK
In the last decade, remote sensing data has become essential for
places with difficult access, limited resources to collect data on
the ground, and studies that require broad spatial coverage. This
section highlights three trends intersecting our work: applications
that leverage remote sensing in developing regions, state-of-the-
art semantic segmentation techniques using deep learning, and
building detection and change monitoring using satellite imagery.

2.1 Remote Sensing Applications
A key area of application of remote sensing-based techniques has
been agriculture, with substantial work developing deep learning
models to monitor crops and agricultural systems from space [20,
33, 39, 43, 45, 51, 52] as well as map cropland using semantic seg-
mentation [52]. These techniques mainly leverage multi-spectral
imagery at a moderate resolution (30𝑚) from MODIS and Landsat-8
satellites. These satellites provide multi-temporal observations at
regular fixed intervals, presenting different challenges as compared
to applications like ours that use high-resolution imagery, which
arise from a variety of sensors at irregular temporal resolutions.

Another prominent problem space is monitoring and estimat-
ing poverty and well-being [22, 23, 31, 55]. Given the geographic
distribution of people under the poverty line, poverty maps are
essential inputs for poverty alleviation, political accountability,
and impact evaluation. For instance, in [31], the authors combine
high-resolution satellite imagery with nighttime maps, arguing that
nighttime data are a rough proxy for determining economic wealth.

Satellite imagery and convolutional neural networks (CNNs)
have also been used in rural and developing regions for monitor-
ing road quality in Kenya [6], mapping infrastructure quality in
Africa using survey data as ground truth [36], and evaluating elec-
trification using globally-available and temporally-rich nighttime
satellite data [13]. Like our work, these approaches of poverty mea-
surement and infrastructure monitoring typically reveal reduced
performance in rural regions but often do not consider longitudinal
analysis, limiting their findings to individual points in time (with
the exception of [13])..

A number of other applications employ CNNs and high-resolution
longitudinal satellite imagery to monitor infrastructure, includ-
ing the detection of rooftop solar panels [7, 28] and solar power
plants [27, 30]; the estimation of generation capacity of these sys-
tems using weather forecasting data, solar irradiation [29, 41]; lo-
calization of wind turbines [61]; monitoring of grid infrastructure
such as power lines [44]; and modeling of building energy con-
sumption [17]. However, these applications are typically restricted
to urban areas and high-income regions with substantially more
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Desired Features
Dataset Resolution(𝑚) Data Source VHR(0.5m/px) AoI Annotations Multi-temporal

Landcover.ai [5] 0.25-0.5 Aerial
√ × √ ×

UC Merced [53] 0.3 USGS National Map
√ × ∗ ×

PatternNet [62] 0.06-5 Google Earth
√ × ∗ ×

LEVIR-CD+ [46] 0.5 Google Earth
√ ∗ √ ∗

SpaceNet 2 [50] 0.3-1.24 WorldView-3
√ × √ ×

SpaceNet 7 [18] 4 Planet × ∗ √ √

RESISC45 [11] 0.2-30 Google Earth
√ × ∗ ×

Google Open Buildings [47] – Google Earth × √ √ ×

Table 1: Some state-of-the-art datasets and approaches that aim to measure urban change using remote sensing techniques and
artificial neural networks. The desired features are shown in the last four columns to estimate longitudinal structure change
in our Area of Interest (AoI). Check marks indicate that the listed approach complies with the feature, an asterisk indicates
partial compliance, and the x mark indicates that the feature is absent.

voluminous and homogeneous high-resolution imagery and greater
ground truth data availability.

2.2 Semantic Segmentation
Image semantic segmentation divides an image into multiple re-
gions by assigning a class to each pixel within the image. Some
applications include improving the performance of object detection
and recognition algorithms, scene understanding, or video index-
ing [59]. CNNs are the most effective approach to performing se-
mantic segmentation [12] and currently, U-Net-based methods [42],
as well as spatial pyramid pooling-based architectures such as PSP-
Net [58], PAN [34] and DeepLabViewV3+ [10], are commonly used.

U-Net [42] uses skip connections to help prevent information
loss as data flows through the network, leading to faster training
speed and improved accuracy. PSPNets [58] use a pyramid scheme
to enable a more effective learning process from data distributed
unevenly across spatial dimensions. Recent segmentation methods
such as Segment Anything [32] leverage Vision Transformers [16]
motivated by its scalability and representational power.

In our work, we apply these methods and explore ways to en-
hance their performance specifically for multi-temporal imagery
via custom augmentation techniques to replicate the idiosyncrasies
of varying satellite sensors and to accommodate training data im-
balances. We also develop a method to infer ground sample distance
from satellite imagery with unknown metadata in order to enhance
model training for specific vintages and resolutions of imagery.

2.3 Change and Building Detection Using
Satellite Imagery

Given its significance for infrastructure assessment, urban plan-
ning, and development, building extraction from remotely sensed
data and change detection have been intensively explored in the
literature [9, 25, 35, 37, 60]. Most building detection approaches
rely on encoder-decoder architectures and semantic segmentation
techniques as described in 2.2.

Multiple building detection competitions have enabled the prolif-
eration of models and publicly available imagery [15, 18, 50]. How-
ever, they tend to have limited geographical and temporal scope,
with few examples focused on developing regions. To efficiently
perform longitudinal building detection in developing regions, the

input datasets for training a supervised learning model must in-
clude imagery from the area of interest (context matter), a very high
spatial resolution (VHR) to detect small structures, annotations, and
multi-temporal composites to assess changes over time.

Table 1 summarizes state-of-the-art datasets and approaches that
aim to measure settlement change using remote sensing techniques
and artificial neural networks. As we can observe, none of the ex-
isting approaches comply completely with the desired features to
accurately estimate structure change in developing settings. For
instance, recently released building footprint estimates for the en-
tire African continent were recently released but without the input
imagery or temporal metadata [47]. [18] provides multi-temporal
composites and annotations but at a much lower resolution and
only for select urban areas. The characteristics that make this task
most difficult are the multi-temporal nature and imagery of rural
places in underdeveloped settings. With these settings experienc-
ing rapid urbanization and swift changes due to climate change (as
in much of the African continent), it is essential to track changes
over time, particularly for applications related to infrastructure
provision, economic growth, and livelihood development.

3 METHODS
Figure 2 illustrates our change and building detection framework.
First, we develop a tool to collect raw imagery in our area of interest
at VHR. Second, we perform significant image pre-processing to
mitigate the presence of artifacts. Third, we train a classifier to
improve the performance of the building detector. Our classifier
leverages the relationships between images captured at different
scales with a building segmentation model specialized for ground
sample distance (GSD). Finally, we perform building matching on
subsequent imagery to assess structure change and growth.

3.1 Data Collection
We developed an automatic data collection tool using Google Earth
Pro Desktop (GEP), a computer freeware that creates 2D and 3D
models of the Earth, mostly using satellite images. Users can navi-
gate globally by entering addresses and coordinates using a user
interface. By controlling the zoom levels, users can access imagery
resolution ranging from 15𝑚 to 15𝑐𝑚 per pixel. Additionally, GEP
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Figure 1: (a) Natural artifacts during the image capture: undesired and inherent image phenomena were identified during the
data collection step such as cloud cover, shadows produced by clouds, and fog due to sand in desert areas. (b) Examples of
artificial artifacts encountered in the imagery collected using our data collection tool.

provides historical images that can be accessed and downloaded
using a time slider icon. Large cities and urban areas typically have
the best spatial and temporal resolution. However, selecting and
downloading multi-temporal imagery from a given location re-
quires user manual intervention, which is tedious and not scalable.
On average, downloading multi-temporal imagery for a single tile
covering an area of ≈ 2𝑘𝑚2 can take up to four minutes.

Knowing these constraints, we automate this process by building
an application that mimics the actions on the screen required to
find a region of interest and download each temporal snapshot. We
use pyautogui [3], a Python library that controls the mouse and
keyboard to emulate interactions with a Graphical User Interface
(GUI). Our data collection tool works as follows: we first construct
a geospatial grid of the area of interest. Each grid cell has the size
of the GEP tiles that provide the desired spatial resolution (≈ 2𝑘𝑚2

at 1, 600𝑚 above the ground). Using the centroid’s coordinates for
each grid cell, our tool inputs the location to GEP and downloads
the capture. Then, our tool navigates the time slider iteratively to
collect tiles across time until all the grid cells are covered. All tiles
are 3840𝑥2160 pixels at a sub-meter resolution.

To improve the scalability of our data collection process, we
deployed multiple instances of our tool and covered numerous
areas of interest. Our tool increases the data collection speed 100x
over manual effort. So far, we have more than 5,124 multi-temporal
tiles, covering an area of ≈ 10, 248𝑘𝑚2 in Kenya.

3.2 Image Pre-processing
The quality of satellite imagery can be affected by natural and
unnatural artifacts; the most common artifacts are caused by the
atmosphere. The atmosphere scatters sunlight in all directions, pro-
ducing images with different distortions. In addition, cloud cover
and environmental conditions can occlude land observations, mak-
ing detecting structures challenging. Figure 1(a) illustrates different
kinds of natural artifacts that arise in imagery. These natural arti-
facts include shadows produced by clouds, fog presumably occur-
ring during sand storms in desert areas, and the occlusion caused
by clouds. Another set of artifacts occurs due to satellite glitches or
electronic noise. Figure 1(b) shows different artificial artifacts, such
as partially blurred and gray-scale images and distortions affecting
color accuracy and brightness.

While these artifacts are often challenging to eliminate without
sacrificing some image quality, there are ways to reduce their nega-
tive impact on the training step. For example, image filtering can
flag and remove samples affected by the abovementioned artifacts.

Artifact Frequency (Proportion)

Gray-scale 1395 (3.6%)
Cloud cover 3785 (9.8%)
Blur 5578 (14.5%)

Table 2: Number of images (and proportion) with extreme
artifacts in the initial training set (38,304 patches). The most
common artifact detected is blurred images, mainly due to
low-quality sensors in the early 2000s. The final training set
contains 27,546 patches.

For this work, we use the variation of the Laplacian filter as a mech-
anism to detect artifacts associated with blur [38]. A Laplacian is a
differential operator defined in equation 1 where 𝑓 represents an
image. An in-focus image tends to have discontinuities observed
with a Laplacian filter. A blur-free image has high spatial frequency
content, which causes the edges of objects in the image to become
sharp and clear. In contrast, an out-of-focus image will have low
spatial frequency content, which will cause the edges of objects to
become blurry and indistinct. By calculating the variance of the
Laplacian filter, we can estimate how spread the high-frequency
content is and determine if the image is blurry. We estimate a vari-
ance threshold (0.0003) based on the imagery collected to discard
samples that suffer from low variability and are likely to be blurry.

∇2 𝑓 =
𝜕2 𝑓

𝜕𝑥2
+ 𝜕2 𝑓

𝜕𝑦2
(1)

Images with cloud cover are detected by measuring the number
of white pixels. The pixel is likely white if high pixel values are
encountered in all the color channels (RGB). Then, we calculate
the proportion of white pixels in the entire image and filter out
examples with more than 40% white pixels. Gray-scale images have
the same pixel values in all three RGB channels, sowe apply a logical
AND operator between the channels to identify such cases. We use
data augmentation techniques explained in the following section
to mitigate the impact of brightness and color accuracy differences.
Table 2 shows the number of extreme artifacts encountered in the
training dataset where the main category was blurred images. In
the pre-processing step, we aim to remove extreme artifacts that
are not useful in the building segmentation process and add noise
to the training data.

3.3 Ground Sample Distance
Ground Sample Distance (GSD) refers to the geometric separation
of pixels on the ground, which is specific to the instrument and
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(a) (b) (c)
Figure 2: Approach to estimate longitudinal structure change. The top row illustrates the initial timestamp, and the bottom
row a subsequent period. (a) Data collection is performed using an automatic data collection tool and extreme artifacts are
removed in the pre-processing step. Each input image is fed to a Ground Sample Distance (GSD) classification CNN to identify
its GSD, which is used to select the appropriate GSD-specialized building detector. (b) At each period 𝑡 the corresponding RGB
imagery is fed into the segmentation model to produce a binary building prediction mask. (c) A unique identifier is assigned to
each building. Overlapping structures in subsequent periods receive the same identifier.

technology of the satellite used to obtain an image. Multiple sensors
with different GSDs may have captured the exact location in multi-
temporal applications. Therefore, due to the limited availability
of labels at various periods, longitudinal building segmentation
models pre-trained on a single GSD may overlook this feature. This
can affect performance during inference if the model does not learn
from images of different scales.

Our framework includes a GSD-aware model to address the
challenge of identifying the sensor resolution of an image. This
model indexes a specialized building segmentation model tailored
to the specific GSD. We trained this model using supervised CNN
techniques and natural color satellite images from DigitalGlobe
in Kenya. DigitalGlobe offers a range of imagery products with
varying processing levels and geolocational accuracy. Each prod-
uct comes with support files containing metadata about the re-
spective GSD. For example, WorldView-2 and GeoEye-1 have a
50𝑐𝑚 GSD, QuickBird-2 has a 65𝑐𝑚 GSD, and WorldView-3 has
a 124𝑐𝑚 GSD. We used this metadata as ground truth to train a
CNN multi-classifier with a RestNet18 encoder. Ensemble learning,
which combines models for better performance, was not used due
to computational cost.

To increase the classifier’s robustness, we expanded the ground
truth classes by synthetically generating various GSD classes from
the original imagery using bilinear sampling. We trained a classi-
fier of 10 different GSDs (50𝑐𝑚, 65𝑐𝑚, 80𝑐𝑚, 100𝑐𝑚, 124𝑐𝑚, 150𝑐𝑚,
175𝑐𝑚, 200𝑐𝑚, 250𝑐𝑚, and 300𝑐𝑚), which covers most of the GSD
range available in GEP. We trained our classifier using more than
200, 000 patches of 256x256 pixels each distributed across differ-
ent classes. 70% of the patches were used for training and 30% for
testing. In Section 4 we discuss the performance of this model.

3.4 Building Detection and Tracking
Our longitudinal monitoring of structure growth model boils down
to identifying the presence of structures in time 𝑡 = 1 and evaluating
the changes at 𝑡 = 𝑛. We build a set of GSD-specific supervised
learning models that aim to perform semantic segmentation of
buildings at each 𝑡 , assign structure identifiers, and propagate them

across time by assigning the same identifier to each building that
overlaps with an intersection-over-union (IoU) ratio greater than
0.5. Finally, we quantify the changes in the number of identifiers at
each timestamp to estimate growth.

We used our data collection tool to gather imagery to develop
accurate segmentation models, which we then paired with building
footprint annotations from Google’s publicly available dataset. This
dataset covers 64% of the African continent and over 514 million
structures. While Microsoft Open Buildings and Open Street Maps
also offer building footprints for some areas in Kenya, we found
that the annotations were lower quality and fewer than the Google
dataset. It is possible that the annotations we used were produced
using a model trained on the same satellite imagery we gathered,
which could explain any differences in accuracy. Additionally, we
matched building annotations with images taken within six months
of the release of the building footprints since the annotations were
not multi-temporal.

Our segmentationmodel was developed using over 27,000 patches,
each with 256x256 pixels, distributed across various GSDs. For train-
ing purposes, 70% of the patches were utilized, while the remaining
30% were used for testing. Furthermore, we initiated the model with
pre-trained weights from ImageNet.

Our approach to estimating longitudinal structure changes in
rural areas is summarized in Figure 2. We use a similar method to
the baseline algorithm presented in the SpaceNet7 challenge [18].
Our GSD classifier receives imagery at different timestamps 𝑡 and
sends the input image to the corresponding building segmentation
model, which is based on the GSD. The segmentation model then
produces binary building prediction masks, which are converted to
building instances with unique identifiers. To ensure that multiple
instances of the same building are associated over time, structures
in the exact location are assigned the same identifier.

4 EVALUATION
GSD classifier.We use a pre-trained deep residual learning model,
ResNet18 [24], to train a 10-class supervised model. We modify
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Figure 3: Confusion matrix for the GSD classifier’s inference
on images with GSD jitter. The overall accuracy for this sam-
ple is 71%, whereas for images without jitter (with the same
GSD as the labels), the accuracy is 95%.

the last fully connected layer to match the number of classes and
fine-tune the model by training it with a learning rate of 1𝑒 − 4
and a batch size of 16. We train and evaluate the GSD classifier
on GSD-augmented images using bilinear resampling. Finally, We
assess the model’s performance on a balanced dataset, achieving a
95.6% classification accuracy.

To test the robustness of the classifier for images with different
GSDs from the 10 pre-defined, we created augmented images with
different GSDs from DigitalGlobe products for evaluation only by
adding a uniformly distributed jitter of +/- 5cm for each pre-defined
GSD. Since GSD is a continuous variable, we expected the classifier
to assign the closest GSD class to each image. The results are shown
in a confusion matrix in Figure 3. This experiment shows that the
model correctly classified images most of the time, even with GSD
jitter. This resulted in an accuracy of 71.3%, with 95% of predictions
falling within one class of the correct label. It is possible that the
model performs poorly in the 124𝑐𝑚 category due to the type of
area being imaged. We noticed that most of the images in this
category have dense forests in very rural areas, which makes it
difficult for the model to learn the spatial features of the GSD. On
the other hand, the 64𝑐𝑚 category performs best, as it contains
more desert areas, highlighting structures and making estimating
the GSD easier. Nonetheless, our current performance provides
sufficient confidence in our GSD predictor.

Building detector.We trained GSD-specialized segmentation mod-
els using all the training images collected through GEP and paired
with Google Building Footprint masks. The GSD classifier indexes
the GSD-specialized building detectors. We perform ablation on dif-
ferent segmentation models and evaluate using Intersection-Over-
Union (IoU) for the predicted building segmentation mask and the
Mean Squared Error (MSE) and Mean Percentage Error (MPE) for
the predicted number of buildings (See Table 3). We vary different
hyperparameters such as learning rates, batch size, and patch size

Model Encoder Loss BS IoU MSE MPE
UNet ResNet34 Jaccard 8 0.453 10.284 -17.794
UNet ResNet34 Dice 8 0.468 13.524 -17.648
UNet ResNet34 Dice 16 0.470 8.60 -16.203
UNet ResNet34 Jaccard 16 0.474 6.567 -7.185

DeepLabV3+ ResNet34 Jaccard 16 0.368 9.651 -18.942
PSPNet ResNet34 Jaccard 16 0.243 19.296 -41.533
PAN ResNet34 Jaccard 16 0.282 14.89 -40.008
UNet ResNet50 Jaccard 8 0.469 11.993 -22.889
UNet ResNet101 Jaccard 32 0.472 10.489 -17.826
UNet EfficientNet-b5 Jaccard 16 0.355 15.48 -27.15

Table 3: Summary of quantitative results for different com-
binations of architectures, encoders, and hyperparameters.
Intersection-over-Union (IoU), Mean Squared Error (MSE),
Mean Percentage Error (MPE), and Percentage Area were
used as evaluation metrics. The best results are in bold.

and evaluate different loss functions and encoders (ResNets and
efficientNet-b5 [49]).

For semantic segmentation tasks, Jaccard and Dice loss are com-
monly used loss functions. Given a vector of ground truth 𝑦𝑖 and a
vector of predicted labels 𝑦𝑖 , the Jaccard index of class 𝑐 , also called
Intersection-Over-Union (IoU) score is defined as in Equation 2 and
its respective loss in Equation 3. Dice loss is presented in Equation 4,
where 𝑖 represents an example in the dataset.

𝐽𝑐 (𝑦𝑖 , 𝑦𝑖 ) =
|𝑦𝑖 = 𝑐 ∩ 𝑦𝑖 = 𝑐 |
|𝑦𝑖 = 𝑐 ∪ 𝑦𝑖 = 𝑐 | (2)

Δ𝐽𝑐 (𝑦𝑖 , 𝑦𝑖 ) = 1 − 𝐽𝑐 (3)

𝐷 (𝑦𝑖 , 𝑦𝑖 ) = 1 − 2𝑦𝑖𝑦𝑖 + 1
𝑦𝑖 + 𝑦𝑖 + 1

(4)

The best-performingmodel was trained usingUNetwith a ResNet-
34 encoder, Jaccard loss, and a batch size of 16. Our best result (0.474
IoU) is close to the IoU threshold of 0.5 defined by the SpaceNet chal-
lenges [50], even with the shortcomings related to detecting small
objects in rural areas, particularly with older, less clear imagery.

GSD-aware detector. Table 4 shows the results of training different
building detectors for each GSD (GSD-aware) in the dataset, indexed
by our GSD classifier. We compare these results to using a single
detector trained with all GSDs but without the input from the
GSD classifier (GSD-unaware). We tested the performance of these
models on test sets of GEP images classified at different GSDs.
GSD-aware detector outperformed the generic model in 2 out of 3
resolutions, with up to 11.2% improvement.

Although the difference in IoU was negligible for a GSD of 65𝑐𝑚,
it’s worth noting that the training data used for the GSD-aware
models was only a fraction of the total training data available.
Specifically, we only used data with GSD specific to each GSD-
aware detector.

We also look at the performance of our model at different periods.
As discussed in Section 3.2, some artificial artifacts can occur during
sensing. Due to differences in sensing instruments across time, we
observe that many of these artifacts occurred with older images
when less sophisticated sensors were used during data acquisition.
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GSD IoU GSD-aware IoU GSD-unaware sample size

50 cm 0.475 (0.20) 0.427(0.147) 2171
65 cm 0.39(0.17) 0.40 (0.18) 793
80 cm 0.366 (0.191) 0.35(0.197) 2546

Table 4: Performance comparison of GSD-aware vs GSD-
unaware segmentation models. GSD-aware outperforms the
unaware model for 2 out of 3 GSD values, showing improve-
ments of up to 11.2%. GSD-aware models use a fraction of the
training data required to train the unaware model.

original random brightness color jitter blur

Figure 4: Types of data augmentation used to emulate
changes in brightness, color accuracy, and blur that are
present in imagery collected at different points in time.

Since our training dataset is static in time to match the release date
of the building footprints, we emulate such artifacts using data
augmentation techniques such as random brightness, color jitter,
and blur. These emulated and mild artifacts aim to improve the
model’s robustness, unlike the extreme artifacts from the original
dataset that were removed during pre-processing. Figure 4 illus-
trates the type of augmentation used to improve the performance
of our model over time.

To evaluate the impact of our data augmentation and GSD aware-
ness, we manually annotate buildings in a sequential set of tiles
belonging to the same location and perform the inference step using
models trained with and without augmentation. Figure 5 shows
that older images (with worse sensing instruments) perform worse
than recent ones. On the other hand, we can observe that data
augmentation helps improve performance for all years and across
different models by up to ≈ 7.8%. Moreover, the data augmentation
on the GSD-aware model shows better performance in most of
the periods even though the training set has fewer samples. This
highlights the importance of performing data augmentation for our
study in developing regions, where the quality of satellite imagery
might not be consistent over time.

Figure 6 illustrates the qualitative results of our best model for
images with different densities of structures. Places with a high
density of buildings represent a challenge for individual detection
since the segmentation map tends to merge buildings that are signif-
icantly close to each other. For low-density locations, the model can
segment individual buildings and show robustness in the presence
of other objects, such as backyards, trees, and vehicles.

5 CASE STUDY
Our tool for longitudinal structure tracking can be used for land
management, urban planning, and disaster relief in developing
settings. In this section, we present a case study that uses the infer-
ence of longitudinal structure estimation. We combine open-source
datasets to understand correlations between changes in the built
environment in rural areas and electrification.

Figure 5: Performance of multiple segmentation models. The
GSD-aware segmentation model performs better when data
augmentation is used during training. We trained using 2019
images for consistency with building annotations release
data and saw a performance improvement of up to 7.8%. Over-
all, data augmentation improves performance across time
and model types.

Figure 6: Qualitative results of our initial segmentation
model. The figure illustrates performance for input images
with (a) high and (b) low structure density.

5.1 Datasets
To perform statistical analysis, we consolidate the following datasets
in a common grid with grid cells of 1𝑘𝑚2 and then added the struc-
ture counts from our model:

Multi-dimensional Poverty Index(MPI) and population density. A
widely used and publicly-available source of gridded population
estimates is WorldPop [2], which provides annual population count
estimates from 2000 to 2020 at a resolution of 3 and 30 arc-seconds
(100m and 1km at the equator, respectively) globally. WorldPop
estimates the population using various models that leverage census
data and a stack of covariates. Specifically, we use the datasets
for Kenya generated with a top-down unconstrained estimation
modelling approach [48]. We use the same grid to consolidate the re-
maining datasets. WorldPop also provides development and health
indicators with the same grid cell resolution as discussed above.
We use the proportion of residents living in MPI-defined poverty
for each grid cell.

Urban-rural catchment areas. This dataset provides different cate-
gories of grid cells located in urban centers based on their sizes and
travel time when the cells are located in rural areas. The dataset is
global and has 30 arc-second (1km) spatial resolution [8].
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Variable mean (SD) Treatment Control

Population 2009 189.50(55.87) 189.51(55.81)
URCA 12.71(3.043) 12.71(3.039)
MPI 0.404(0.118) 0.404(0.117)

Table 5: Comparison of summary statistics between treat-
ment and control groups after matching 1,000 randomly
selected samples. The matching algorithm considers pop-
ulation, Urban-Rural Catchment Areas (URCA), and Multi-
dimensional Poverty Index (MPI).

Transformer locations and commissioning dates.Our ground-truth
data of grid electricity access comprises the geographic location
of distribution transformers and minigrids in Kenya. The national
power utility provided transformer locations. This dataset includes
latitude and longitude, date of commissioning, and power capacity
in 𝑘𝑉𝐴 units for the more than 57𝑘 transformers in Kenya. Dates
of commissioning span from 1966 to 2017.

5.2 Grid Electricity and Structure Growth
We are especially interested in identifying correlations between
building changes and access to grid electricity in rural communities.
These correlations are particularly useful when changes in the build-
ing stock can be used as an explanatory variable for causality studies.
To understand this correlation, we use a difference-in-differences
analysis, a quasi-experimental identification strategy for estimating
effects that predate an intervention [14]. In our setting, we define
the intervention as when a community gets its initial distribution
transformer. Due to intrinsic biases in electrification policies, esti-
mating causal effects requires access to randomized experiments
and additional details of the communities but proving causality is
out of the scope of this work. Nonetheless, quantifying the changes
in the built environment in a large variety of communities in the
periods immediately after grid expansion can help planners better
understand the range of structure growth experienced previously
across communities and perhaps prepare coordinated infrastructure
provisions (including water, sanitation, health, and school services)
in future settings.

Using the historical electrification data, we define a controlled
study where we compare if there is a difference in how the built
environment changes in places that received the intervention (treat-
ment group). We define our treatment group as areas (grid cells
of 30 arc-seconds) electrified after 2009 and the untreated group
(control) as the places that did not experience the intervention.
These groups were identified using the location and commissioning
date of distribution transformers. We randomly sampled 1,000 grid
cells with population densities between 100 and 300 inhabitants
to comply with the World Bank’s definition of rural areas [1]. To
find the corresponding grid cells for the control group, we use a
nearest-neighbor matching approach (k=1). We match each grid
cell in the treatment group with the cell that does not belong to the
treatment group but has the closest Euclidean distance based on
population density, multidimensional poverty index, and catchment
area. These two groups are described in Table 5.

Using our semantic model, we estimate the number of structures
over time for each grid cell and define the difference-in-differences
model as follows:

coef std err t P> |t| [0.025 0.975]

const 40.638 1.924 21.183 0.001 36.881 44.536
treat -7.849 2.639 -3.2 0.001 -14.201 -3.687
time_treat 44.831 1.918 22.342 0.000 42.123 50.123
did -14.201 2.874 -4.585 0.001 -18.356 -7.667

Table 6: OLS Regression Results for the difference-in-
differences analysis. The did coefficient (-14.201) shows a
negative correlation, which indicates that after electrifica-
tion, there are ≈ 14 (15%) fewer buildings than expected in
2019. The number of observations is 22118.
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Figure 7: Average number of structures during 2009 and 2019
for places that were electrified after 2009 (treatment group)
and places that did not experience the intervention (control).
Electrified settlements tend to physically grow at a slower
pace (≈ 15% less than expected).

𝑌𝑠 = 𝛼 + 𝛾𝑋1 + 𝜆𝑋2 + 𝛿 (𝑋1𝑋2) + 𝜀 (5)

Where𝑌𝑠 represents the dependent variable referring to the num-
ber of structures,𝑋1 is a dummy variable representing the treatment
(1) and control group (0), 𝑋2 represents a dummy variable indicat-
ing treatment pre- (0) and post- (1) intervention (electrification).
The regression coefficients 𝛼 , 𝛾 , and 𝜆 represent the group means,
and 𝜀 represents the random error term. The 𝛿 coefficient, a key
parameter of our analysis, indicates how much the average number
of structures in the treatment group has changed during the period
after the treatment, compared to what would happen to the same
group if the intervention did not occur.

Table 6 summarizes the results for the regression. The regression
coefficients const(𝛼), treat(𝛾 ), time_treat(𝜆), and did(𝛿) are sta-
tistically significant so it is possible to reject the null hypothesis. As
we can observe, the did(𝛿) coefficient indicates the number of struc-
tures negatively correlates with electrification. On average, places
that did not receive the intervention have ≈ 14 structures more than
electrified places. This result is initially non-intuitive - one may
theorize that electricity access would attract more residents and
encourage more structure construction. Below, we discuss some
ideas as to why this occurs.

Figure 7 illustrates the average differences and the counterfac-
tual (what would have happened to 𝑌𝑠 if the intervention did not
happen). We can observe that the slope of the treatment group is
lower than the counterfactual, indicating the negative correlation
observed in table 6. Even though we are not implying causality in
this study, one hypothesis about the negative correlation is that
electrification occurs way after the structures have been established,
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so small changes in the built environment are observed. Geograph-
ical cost factors (how distant settlements are from the main grid)
may have had a major role in the growth of the energy infrastruc-
ture, which advantages wealthy regions. This circumstance may
demonstrate some socioeconomic biases in providing additional
services to energy infrastructure (health, education, financial, and
so on). Another hypothesis is that electricity grid access may not
significantly affect decisions about where populations relocate. We
leave the evaluation of these hypotheses to future work. This ex-
ample shows the utility of our approach, particularly concerning
growth in structures – seeding new hypotheses, quantifying some
aspects of the efficacy of infrastructure investments, and testing
the validity of long-held assumptions.

6 CONCLUSIONS
High-resolution satellite imagery can transform the monitoring of
rural regions, including buildings and infrastructure, for govern-
ments, NGOs, investors, and private organizations. Current meth-
ods for monitoring development – usually involving infrequent,
inaccurate, and insufficient surveys – are often unreliable, outdated,
or nonexistent. Satellite imagery can provide a more accurate and
up-to-date picture of development patterns, enabling tracking of
changes in dynamic settings. This information is crucial for making
informed decisions about allocating scarce investment resources
and promoting economic and livelihood growth.

In this work, we have developed techniques to improve the per-
formance of segmentation tasks for high-resolution multi-temporal
imagery, which often suffers from variation due to different sen-
sors, imbalanced datasets, and potentially unavailable metadata. We
built a pipeline with an automatic imagery collection tool to obtain
high-resolution imagery in Kenya and used a CNN-based model
to detect ground sample distance, segment buildings and analyze
structure changes. We quantify the enhanced performance from our
custom data augmentation and ground sample distance metadata
inference techniques, particularly for multi-temporal applications.
Last, we present an application in which our tool can be used to
provide policy-relevant insights at country-scale for planning new
electricity infrastructure systems. In general, the ability to accu-
rately detect buildings from satellite imagery enables tracking of
changes in the density of the built environment, land use, and other
structural features. We believe that this approach can lead to devel-
oping explanatory indicators for socioeconomic analysis, natural
risk assessment, and policymaker tools to boost development in
emerging economies, particularly in underdeveloped rural areas.
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