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Abstract

Insufficient building information, including footprint,
conditioned area, age, and type, hinders urban-scale en-
ergy modeling. These parameters are crucial inputs for
the simulation and optimization processes integral to the
modeling. Prototypical building energy models, based
on building surveys and code requirements at the time of
construction, are frequently used when audit-quality data
is unavailable. This helps to infer internal building char-
acteristics. However, even local data sources like tax as-
sessors’ data contain unique land use or parcel codes that
can be challenging to map to these prototypical build-
ings. This information does not directly correlate with
the standard building type used to perform energy simu-
lations. In this study, we apply and cross-validate several
machine learning algorithms to automate the mapping
from general building descriptions to standardized build-
ing types, as defined by the U.S. Department of Energy
(DOE), a key component to accurately estimate building
energy profiles at scale. The XGBoost algorithm outper-
formed others, achieving an F1 score, precision, and re-
call of 92.8%, 93.4%, and 93.0%, respectively. These re-
sults highlight the potential of advanced machine learn-
ing techniques in bridging the data gap for urban-scale
energy modeling and suggest a path forward for enhanc-
ing the resolution and accuracy of large building energy
datasets.

Introduction
Building Type Prediction

In recent years, building information technology has ex-
perienced significant advancements facilitated by many
innovative technologies that empower the collection
and translation of building-related data into valuable
datasets. Microsoft and Google have developed frame-
works to capture comprehensive building footprint infor-
mation. These footprints are then processed by advanced
machine learning algorithms to convert them into practi-
cal building characteristics (Wei, Ji, and Lu 2020). These

details are used as inputs to Urban Building Energy Mod-
els (UBEMs), which in turn reduces the uncertainty of
the estimates. Researchers at Oak Ridge National Lab-
oratory have developed building models for every build-
ing in the US (New et al. 2021). Internet of Things has
also begun to be incorporated into some of these models
(Tang et al. 2019).

The development of many of these building data sets
has become the cornerstone for the emergence of the
UBEMs, which are dedicated to comprehensively an-
alyzing and evaluating buildings’ energy performance
across various scales. Within UBEMs, the proper col-
lection and processing of the building’s physical charac-
teristics are crucial steps to guarantee the high reliabil-
ity of the outputs and meet the specific stakeholders’ re-
quirements. Many different approaches have been com-
pared to see how they meet the stakeholders’ require-
ments (Sun, Haghighat, and Fung 2020). Two common
approaches include the use of the energy plus simulation
software (Zhang et al. 2019), as well as the use of Artifi-
cial Intelligence (AI) (Himeur et al. 2021) and Machine
Learning (ML)(Bourdeau et al. 2019). Since nearly all
methodologies rely on quality input data, methods must
be developed to collect required feature information. To
assess an ad valorem tax on a land parcel, tax asses-
sors must gather and leverage pertinent building infor-
mation. However, this data varies by county and often
exhibits conspicuous gaps, particularly regarding critical
building information such as the building’s type or func-
tion (New et al. 2020). These gaps can be attributed to
various factors, including technological limitations and
socioeconomic concerns. Consequently, the absence of
critical building type information can significantly im-
pact the assessment and analysis of a building’s energy
performance when utilizing these data sets.

Unfortunately, the definition, description, and data for-
mat of a building type will vary across different data
sources, and this divergence can lead to inconsistencies
when multiple data sources are integrated into a single



workflow for assessing the energy performance of build-
ings. The ability to harmonize building descriptions and
convert them into standardized building types, as defined
by the U.S. Department of Energy (DOE) based on the
ASHRAE 90.1 Standard (The U.S. DOE-EERE 2021),
which encompasses the building’s function from an en-
ergy perspective, holds significant potential for advanc-
ing research within the domain of UBEMs. Alignment
with such authoritative sources not only promotes con-
sistency and comparability across various data sets, but
also streamlines the process of categorizing and analyz-
ing building energy performance, mainly when dealing
with buildings with similar idiosyncrasies. By aligning
building types with these standardized classifications, re-
searchers can draw meaningful and consistent insights,
facilitating more robust and reliable research insights.
Ultimately, these efforts streamline data integration and
enhance the broader applicability and effectiveness of
energy modeling methodologies, contributing to more
resilient and energy-efficient built environments.

In light of these considerations, developing a straight-
forward methodology for ascertaining the building type
based on available building information becomes imper-
ative, especially within building energy modeling. For
energy evaluation and analysis, the building type as-
sumes a central role as it significantly influences a build-
ing’s energy performance. Therefore, there is a press-
ing need to develop a reliable model for determining the
building type based on available information. Accurately
characterizing building types can significantly enhance
the quality and reliability of energy performance assess-
ments and simulation result analyses.

Researchers have explored many data-driven approaches
to predict building energy use and efficiency, including
structural design, the Internet of Things, and geospatial
data integration. However, there is still a need to catego-
rize buildings effectively. A comprehensive literature re-
view on building type prediction models reveals a grow-
ing need for compelling building type predictions. Ma-
chine learning models have been developed to capture
and predict building energy loads and demand (Zhang
et al. 2021) (Wang, Hong, and Piette 2020), in addition
to models that focus on energy-efficient designs (Fathi
et al. 2020). Models have also been developed for en-
ergy prediction of groups of buildings (Xu et al. 2019).
Outside of the building energy, machine learning models
have also been created to outline structural design (Sun,
Burton, and Huang 2021). These various types of build-
ing information modeling have garnered substantial at-
tention due to their pivotal role in urban planning, energy
efficiency assessments, and real estate analysis.

Using machine learning in building modeling makes
building type prediction an ideal candidate for the ma-
chine learning approach. The continued growth of
UBEM field showcases a growing body of research that
employs diverse methodologies and data sources to ad-
dress the critical issue of building type determination.
These models hold significant promise for enhancing the
accuracy of urban planning, energy efficiency assess-
ments, and real estate analysis, ultimately contributing
to more sustainable and informed decision-making in the
built environment.

In this paper, we have developed a machine learning
model that can translate and interpret the tax assessor
data containing building information and predict build-
ing types of selected buildings in selected cities in the
United States. The predicted building types will be con-
verted to DOE-referenced building types through a direct
mapping technique using a predefined Python function.

Data Preparation and Explanation

The foundation of our predictive model is a compre-
hensive dataset obtained from tax assessors in New
York, which provides a detailed landscape of building
attributes within the urban context. The data (Energy
and Water Data Disclosure for Local Law 84 2022) is
provided by New York City’s Mayor’s Office of Climate
and Environmental Justice (MOCEJ) (NYC Open Data
2022).The original dataset comprises 29.8K buildings in
New York City, with each building represented by a row
containing 249 columns of property information. For our
current model development, we have pre-processed the
data as outlined below.

Data Labeling

Creating a reliable and accurately labeled dataset forms
the cornerstone of any supervised machine learning en-
deavor. In our study, we tackled the challenging task of
annotating an unlabeled dataset with building types, a
process critical for the subsequent predictive modeling.

For the current stage, our approach to data labeling
involved a domain-driven classification system design,
which drew on a comprehensive understanding of the
functional and physical attributes of buildings. We im-
plemented a Python function, which operated on the
principles of building use and size to assign building
types. This function utilized the ’LargestPropertyUse-
Type’ attribute, which denotes the primary use of a prop-
erty as a primary discriminant. The area of each prop-
erty was used as a secondary measure to refine the cat-
egorization further. For instance, Residential properties
such as ’Single Family Home’, ’Multifamily Housing’,
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Figure 1: Boxplot of Internal Area by DOE Prototype Building Type providing a visual comparison of internal floor

area distributions across different types of buildings.

Table 1: Selected Features for Building Type Classification Model

Feature Description

LargestPropertyUseType
the building.

Largest Property Use Type - Gross

Floor Area (ft?)

area_sq_ft_internal

EUI elec

A categorical variable (53 types) that signifies the primary function of
A quantitative measure of the primary occupancy space.

The total internal floor area, providing a scale of the building size.
The Electricity Use Intensity, an efficiency metric representing electri-

cal energy consumption per square foot.

Number of Buildings

Indicates whether the property is a single building or part of a larger

complex (Range from 1 to 161).

’Senior Living Community’, and other residential lodg-
ings were classified into 'IECC’, *MidriseApartment’, or
"HighriseApartment’ based on their floor area, with spe-
cific square footage thresholds acting as decision bound-
aries. In this study, we defined one building type as
"IECC’, which originally stands for ’International En-
ergy Conservation Code’. This building type was specif-
ically developed to classify residential buildings within
our dataset since the ASHRAE 90.1 Standard had only
covered the commercial building types. This "IECC”
category represents both single-family and multi-family
building types, separating from other residential types
such as mid-rise and high-rise apartment building types.
The resultant dataset, now structured and enriched with
meaningful labels, provided a robust platform for de-
ploying machine learning techniques to predict DOE
building types. This manual rule-based labeling process
serves as an additional step to address the complexity of

building function descriptions. This rule-based labeling
process is employed as an extra measure only when the
dataset lacks predefined DOE building types. In cases
where DOE building types are already defined within the
dataset, this additional step of rule-based labeling is not
necessary. However, this process allows the framework
to perform efficaciously.

While rule-based models offer simplicity and inter-
pretability, their application to the entire dataset is lim-
ited by several factors. Rule-based systems can be-
come exceedingly complex and difficult to manage as
the number of rules grows to cover the diversity within
a large dataset. Our dataset encompasses a wide vari-
ety of building types with complex and non-linear re-
lationships between features, which makes the creation
of a comprehensive set of rules challenging and prone
to human error. So the adoption of machine learning in
this context is important. Machine learning algorithms,



particularly ensemble methods like XGBoost, are adept
at capturing non-linear interactions and subtle patterns
in high-dimensional data that rule-based models might
miss. These complex relationships are essential for ac-
curate classification and can significantly impact model
performance.

In the future, the labeling process is likely to be replaced
by advanced machine learning components. With this
improvement, the developed prediction framework will
be used to handle more intricate building description sys-
tems overall.

Feature Selection and Visualization

Our comprehensive dataset comprises 9,332 individual
records, each described by 25 features. In the realm of
feature selection, we embarked on a judicious process to
identify the predictors most salient for our building type
classification model. The original dataset included a
diverse range of features: ‘bp_building_id’, ‘NYC Build-
ing Identification Number (BIN)’, ‘Address’, ‘City’,
‘building_subtype_internal’, ‘LargestPropertyUseType’,
‘Largest Property Use Type - Gross Floor Area (ft> )’,
“2nd Largest Property Use Type’, ‘2nd Largest Property
Use - Gross Floor Area (ft> )’, ‘3rd Largest Property
Use Type’, ‘3rd Largest Property Use Type - Gross
Floor Area (ft? ), ‘area_sq_ft_internal’, ‘Property GFA -
Calculated (Buildings) (ft> )’, ‘EUl_elec’, ‘Site Energy
Use (kBtu)’, ‘total_bldg_annual_consumption_internal’,
‘year_built_internal’, ‘Construction Status’, ‘Num-
ber of Buildings’, ‘Occupancy’, ‘latitude_internal’,
‘longitude_internal’, ‘BuildingType’, ‘Standard’, and
‘EUI_per_occupancy’. Out of the original 25 features, 5
were selected based on their relevance and potential to
improve model accuracy (See Table 1). These features
underwent a rigorous selection process, underpinned
by the hypothesis that they hold the most significant
information regarding the building type. This hypothesis
stems from both statistical evidence and domain exper-
tise, ensuring that each feature plays a pivotal role in the
predictive power of our model. To gain deeper insights
into the relationship between the building features
and the building types, we conducted an exploratory
data analysis through various visualization techniques.
For instance, figure 1 represents the distribution and
variance of area_sq_ft_internal across different building
types. These visual representations were instrumental
in understanding how each feature contributes to the
identification of building categories.

A critical aspect of our dataset that required special at-
tention was the imbalance present in the distribution
of the response variable, 'BuildingType’ (see figure 2).

Class imbalance is a prevalent issue in machine learning,
where some classes are over-represented in the dataset
while others are under-represented. This imbalance can
lead to biased models that favor the majority class, often
at the expense of minority class prediction accuracy.
Our dataset exhibited a significant skew in the distribu-
tion of building types, with "MidriseApartment’ build-
ings being the most prevalent with 5,685 instances. In
stark contrast, ’Small Office’ buildings represented the
smallest group, with a mere 5 instances. This discrep-
ancy presents a substantial challenge as it can cause a
model to perform well on majority classes while fail-
ing to accurately identify minority classes. We excluded
’QuickServiceRestaurant’ building type from our model
because it is represented by only a single instance in our
dataset, making it statistically insignificant for our anal-
ysis.

Our dataset features the LargestPropertyUseType as a
pivotal categorical variable, which denotes the primary
function of a building. This variable comprises a wide ar-
ray of categories, with 53 distinct types of large building
uses represented. To prepare this categorical data for our
machine learning algorithms, which necessitate numeri-
cal input, we utilized label encoding. Label encoding is
a process where each unique category is systematically
assigned a numerical value. (Mottini and Acuna-Agost
2016)

Methodology
Overall Workflow

Given that DOE-referenced building prototypes (The
U.S. DOE-EERE 2021) encompass a wide range of sub-
building types from an energy efficiency standpoint, we
propose an approach that involves creating a predictive
model to determine building types based on common tax
assessor data attributes. Subsequently, we map these de-
termined types to more generalized DOE building cat-
egories. This methodology leverages insights obtained
from an extensive analysis of tax assessor data across
various cities, revealing a common pattern in the way
building functions are described.

This strategy involves training the model to assimilate
and interpret these property descriptions as informa-
tive learning resources, thereby enhancing its compre-
hension of building stock information. For instance,
within tax assessor data, keywords such as “Residence
Hall/Dormitory,” ”Multifamily Housing,” and “Other -
Lodging/Residential” can be grouped into categories
like single/multi-family residential units, mid-rise apart-
ments, or high-rise apartments based on physical at-
tributes like the total floor area of a building. If the
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Figure 2: The bar chart illustrates the frequency of each building type within our dataset, highlighting the significant
imbalance present. "Midrise Apartment’ buildings dominate the dataset with 5,685 instances, reflecting the common-
ality of this type in urban areas. In sharp contrast, 'Small Office’ buildings are substantially underrepresented with
only 5 instances, indicating the rarity of this building type within the scope of our data.

model can discern distinctions based on selected fea-
tures among buildings and apply the mapping function,
it can readily translate these identified building descrip-
tions into DOE building types, such as "Midrise Apart-
ment” or "Highrise Apartment.”

This approach is equally applicable to commercial and
manufacturing building types. In summary, the critical
aspect of classifying a building into a DOE building type
involves training a model to continuously learn from tax
assessor data’s building property information and con-
vert the building descriptions into predefined DOE build-
ing categories.

Machine Learning Model Development

Our study implements a suite of machine learning al-
gorithms, each offering distinct mechanisms for pattern
recognition and decision-making. We selected four algo-
rithms renowned for their efficacy in classification tasks:

Random Forest, Gradient Boosting (via XGBoost), Sup-
port Vector Machine (SVM), and Logistic Regression.
The choice of algorithms spans ensemble methods, gra-
dient boosting, and linear models to ensure a compre-
hensive analysis through various statistical learning per-
spectives. Each algorithm is capable of handling the
complexities of our imbalanced multiclass dataset. The
detailed algorithms’ hyperparameter selections and com-
parisons are discussed below.

Random Forest is an ensemble learning method based
on decision tree classifiers. It operates by constructing
a multitude of decision trees during training time and
outputting the class that is the mode of the classes of
the individual trees (Liaw et al. 2002). This method is
robust to overfitting and is capable of capturing com-
plex structures in the data. In our implementation, we
first initialized the Random Forest Classifier with a fixed
random state to ensure reproducibility. The model was



then trained on the preprocessed training dataset. Post-
training, we performed predictions on the test set and
evaluated the model using a classification report and a
confusion matrix to assess its performance.

XGBoost stands for extreme Gradient Boosting, an ad-
vanced implementation of gradient boosting algorithms
known for its speed and performance. It builds sequen-
tial trees where each tree attempts to correct the errors
of the previous one (Ramraj et al. 2016). In our applica-
tion, XGBoost was configured for multi-class classifica-
tion, with the objective set to “multi:softprob’ to output
predicted probabilities for each building type, address-
ing our multi-class problem directly. This approach is
particularly beneficial in scenarios where the classifica-
tion involves more than two classes, as in our case with
numerous building types. By using these probabilities,
the model offers a nuanced perspective on its confidence
across the multiple categories, aiding in the interpretabil-
ity of the predictions.

The Support Vector Machine is a powerful classifier
that works by finding the hyperplane that best divides
a dataset into classes (Yu and Kim 2012). SVM is effec-
tive in high-dimensional spaces and with datasets where
the number of dimensions exceeds the number of sam-
ples. In this study, an SVM classifier with a linear kernel
was utilized, benefiting from its ability to handle high-
dimensional data effectively. Given the imbalance in our
data, the ’class_weight’ parameter was set to “balanced’
to adjust weights inversely proportional to class frequen-
cies, thus emphasizing the minority classes.

Logistic Regression (LaValley 2008) is a linear classifier
and thus particularly well-suited to binary classification
problems. For our multiclass classification task, we em-
ployed Logistic Regression with balanced class weights
to address the issue of class imbalance.

Feature Scaling and Hyperparameter Tuning

Before training the SVM and Logistic Regression mod-
els, numeric features were standardized to have a mean
of zero and a standard deviation of one, ensuring that
all features contributed equally to the result without bias
from differing scales. This scaling was critical for meth-
ods sensitive to feature magnitude, such as SVM and Lo-
gistic Regression (Grandvalet and Canu 2002).

For both the Random Forest and XGBoost classifiers, hy-
perparameter tuning was conducted via grid search to
identify the optimal settings that would yield the best
cross-validated F1 macro score. This involved iterating
over a predefined range of values for parameters such as
the number of estimators, maximum tree depth, and min-

imum samples per leaf.

Evaluation Metrics

The models’ performance was assessed using a classifi-
cation report, which provided a detailed view of the pre-
cision, recall, and F1 scores for each class. Detailed de-
scription of these performance metrics can be found at
(Chowdhury and Schoen 2020). Additionally, a confu-
sion matrix was generated for each model, giving insight
into the types of errors made and areas where the model
may require further refinement.

Results

The performance of the four machine learning mod-
els was evaluated using 10-fold cross-validation to en-
sure the robustness and reliability of our results. Cross-
validation is a statistical method used to estimate the skill
of machine learning models. It is commonly used to
compare and select a model for a given predictive mod-
eling problem because it ensures that every observation
from the original dataset has the chance of appearing in
the training and test set. This is particularly valuable
when the dataset is imbalanced, as it provides a more
comprehensive assessment of the model’s performance.
The precision, recall, and F1 scores—critical met-
rics for classification tasks, especially in imbalanced
datasets—were calculated for each model. Precision
measures the proportion of true positives among all pos-
itive predictions, recall (also known as sensitivity) mea-
sures the proportion of true positives identified among all
actual positives, and the F1 score is the harmonic mean
of precision and recall, providing a single score that bal-
ances both concerns.

The results are summarized in the table 2, which shows
the cross-validated performance metrics for each algo-
rithm

Table 2: 10-Fold Cross-Validated Model Performance
Metrics

Algorithm Precision Recall F1 Score
Random Forest 0.83 0.82 0.82
XGBoost 0.93 0.93 0.92
SVM 0.57 0.72 0.60
Logistic Regression 0.32 0.43 0.31

The XGBoost model exhibited superior performance
across all metrics, achieving nearly 0.93 in both pre-



cision and recall, which resulted in an F1 score of
0.92. These results underscore XGBoost’s effectiveness
in handling multi-class classification problems, even in
the presence of class imbalance.

Conversely, the SVM and Logistic Regression mod-
els showed lower precision and F1 scores. The SVM
model’s relatively higher recall indicates its ability to
identify most of the positive instances but at the expense
of a larger number of false positives, as evidenced by
its lower precision. Logistic Regression, while gener-
ally robust and effective for binary classification, did not
perform as well in this multi-class, imbalanced context,
leading to the lowest scores across all metrics.

In addition to the cross-validated performance metrics,
we examined the convergence of the XGBoost model by
plotting the log loss (see figure 3). The log loss plot
demonstrates how the model’s performance improved as
the number of boosting iterations increased. The declin-
ing trend of the log loss value indicates the model’s in-
creasing accuracy in predicting the correct classes over
iterations. A sharp decrease in log loss early in the train-
ing process signifies rapid learning, while a plateau sug-
gests that subsequent iterations provide marginal gains,
which can inform decisions on the appropriate number
of boosting rounds to prevent overfitting.

The performance of the XGBoost model was further an-
alyzed to understand its precision, recall, and F1 score
on a per-class basis. This detailed breakdown is crucial
for multi-class classification problems, especially when
dealing with imbalanced datasets. It provides insights
into how well the model can identify each specific class,
which is essential for practical applications where certain
classes may be more critical than others.

The class-wise performance metrics, presented in Ta-
ble 3, show that the model achieved high precision
and recall for most of the building types, with corre-
sponding F1 scores that indicate a well-balanced predic-
tion capability. Notably, 'HighriseApartment’, ’Large-
Hotel’, ’LargeOffice’, MidriseApartment’, and ’Sec-
ondarySchool’ classes have F1 scores above 0.99, re-
flecting the model’s excellent ability to classify these
building types accurately. These results are particularly
impressive given the challenges posed by the imbalanced
nature of the dataset.

On the other hand, the ’FullServiceRestaurant’ class has
the lowest F1 score at 0.43, which suggests that this par-
ticular class is more challenging for the model to predict
accurately. This could be due to a smaller representa-
tion in the dataset or higher variability within the features
of this class. In general, the model demonstrates excep-
tional performance across most classes, indicating its ro-

bustness and reliability as a predictive tool for building
type classification.

Feature importance is a technique used to identify which
features have the most influence on the predictive power
of a model. In the XGBoost algorithm, feature impor-
tance is often represented by the F score, also known as
the “feature score,” which quantifies the number of times
a feature is used to split the data across all decision trees
within the model. A higher F score indicates a greater
impact on the model’s decisions, reflecting the relative
importance of each feature in the classification process.

Table 3: Class-wise 10 fold cross-validated Performance
Metrics of the XGBoost Model

Building Type Precision Recall F1

College 0.99 094  0.96
HighriseApartment 0.99 0.99  0.99
Hospital 0.92 0.90  0.90
IECC 0.88 0.88  0.88
Laboratory 0.97 1.00  0.98
LargeHotel 1.00 1.00  1.00
LargeOffice 0.99 099  0.99
MediumOffice 0.96 096  0.96
Midrise Apartment 1.00 1.00  1.00
PrimarySchool 0.98 1.00  0.99
RetailStandalone 0.94 098  0.96
RetailStripmall 0.97 091 094
SecondarySchool 1.00 0.99 1.00
SmallHotel 0.97 095 0.95
SmallOffice 0.80 0.80  0.80
SuperMarket 0.90 1.00 093
Warehouse 0.99 0.99  0.99
FullServiceRestaurant 0.43 043 043

The feature importance graph for our XGBoost model, as
illustrated in Figure 4, reveals that ’area_sq-ft_internal’
has the highest F score, indicating it is the most fre-
quently used feature in tree splits and thus the most sig-
nificant predictor of building type. This feature’s F score
is notably higher, close to 20, suggesting its pivotal role
in the model’s classification decisions. The second most
important feature, 'LargestPropertyUseType’, has an F
score close to 14, which, while substantially less than
“area_sq-_ft_internal’, still signifies a considerable influ-
ence on the model’s outcomes.

The other features in the analysis exhibit F scores lower
than 1, suggesting they contribute less to the model’s
predictive capability. This disparity in F scores high-
lights the varying degrees of relevance each feature has
in determining building types. The high F score of
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Figure 3: Log loss of the XGBoost model over boosting iterations. The plot shows a decreasing trend, indicating an
improvement in the model’s predictive accuracy with additional iterations

“area_sq_ft_internal’ underscores the critical role that the
size of the property plays in distinguishing between dif-
ferent types of buildings.

Understanding why certain features are more important
than others can inform domain-specific strategies for
data collection and feature engineering. In the context
of building classification, the results suggest that a build-
ing’s internal area and primary use type are critical fac-
tors to consider, while other characteristics may have a
more marginal impact.

Discussion

While the results are encouraging, we acknowledge cer-
tain potential and limitations. The existing methodol-
ogy involves the integration of specific features sourced
from New York City’s MOCE] dataset (NYC Open Data
2022). However, there exists untapped potential to refine
the prediction model further by incorporating additional
detailed building features found in the original dataset.
This expansion aims to comprehensively evaluate and
potentially improve the accuracy of the model. Should
noticeable enhancements in accuracy occur, the initially
selected features could serve as baseline parameters for
adoption by other cities. This approach bears consider-
able significance, particularly if the model is intended for

predicting the DOE’s referenced building types across a
spectrum of cities in the United States.

In the course of scrutinizing tax assessor data from di-
verse urban areas, it becomes evident that the model’s
accuracy is contingent upon the quality and comprehen-
siveness of the underlying tax assessor data. Any inac-
curacies inherent in the source data have the potential to
permeate the predictive outcomes. Notably, variations
in the formats employed for describing primary building
types of buildings across different cities were observed.
To mitigate this concern, further steps involve the imple-
mentation of a standardized description format, coupled
with the establishment of a dynamic database capable
of assimilating emerging building description categories.
This approach is poised to be a noteworthy undertaking,
with the potential to significantly ameliorate the overall
quality of building data, particularly tax assessor data.

Moreover, the study’s scope was currently limited to
New York City, and further research is needed to validate
the approach across different urban contexts with varying
building typologies and data quality. Future work could
focus on integrating additional datasets, such as remote
sensing data or newly developed data characteristics, to
refine the predictions. Additionally, exploring the im-
pact of temporal changes in building usage and renova-
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Figure 4: Relative Importance of Predictive Features in Building Type Classification Using XGBoost

tions on the model’s performance could yield insights for
maintaining the accuracy of building type classifications
over time.

Conclusion

In conclusion, this paper has provided a method using
machine learning to address the gap of building infor-
mation to building type for assessing internal details and
building-specific energy use scalably at urban- to nation-
wide geographical areas. This study underscores the im-
portance of connecting tax assessor data to DOE building
types for enhanced digital twins and future predictions.
Through extensive training and validation processes, key
algorithms and metaparameters were selected to opti-
mize performance according to cross-validated evalua-
tion metrics. Finally, this research has consolidated in-
sights into a comprehensive and scalable machine learn-
ing approach for building type prediction. The authors
hope variants of this method could have significant im-
plications for urban planning, urban building energy
modeling, resource allocation, and simulation-informed
decision-making towards a more sustainable built envi-
ronment.
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